Home
Class 12
MATHS
if x and y are acute angles such that co...

if x and y are acute angles such that `cosx + cosy = 3/2` and `sinx + siny = 3/4` then `sin(x+y)=`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sin(x+y) \) given the equations: 1. \( \cos x + \cos y = \frac{3}{2} \) 2. \( \sin x + \sin y = \frac{3}{4} \) ### Step 1: Use the sum-to-product identities We can express \( \cos x + \cos y \) and \( \sin x + \sin y \) using sum-to-product identities: \[ \cos x + \cos y = 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] \[ \sin x + \sin y = 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) \] ### Step 2: Set up the equations From the first equation, we have: \[ 2 \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{3}{2} \] Dividing both sides by 2 gives: \[ \cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{3}{4} \quad \text{(Equation 1)} \] From the second equation, we have: \[ 2 \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{3}{4} \] Dividing both sides by 2 gives: \[ \sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right) = \frac{3}{8} \quad \text{(Equation 2)} \] ### Step 3: Divide Equation 2 by Equation 1 Now, we can divide Equation 2 by Equation 1: \[ \frac{\sin\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)}{\cos\left(\frac{x+y}{2}\right) \cos\left(\frac{x-y}{2}\right)} = \frac{\frac{3}{8}}{\frac{3}{4}} \] This simplifies to: \[ \tan\left(\frac{x+y}{2}\right) = \frac{3/8}{3/4} = \frac{3}{8} \cdot \frac{4}{3} = \frac{1}{2} \] ### Step 4: Find \( \sin(x+y) \) Using the identity for \( \sin(2\theta) \): \[ \sin(2\theta) = \frac{2 \tan \theta}{1 + \tan^2 \theta} \] Let \( \theta = \frac{x+y}{2} \). Then: \[ \tan\left(\frac{x+y}{2}\right) = \frac{1}{2} \] Now substituting this into the formula: \[ \sin(x+y) = \sin(2\theta) = \frac{2 \cdot \frac{1}{2}}{1 + \left(\frac{1}{2}\right)^2} = \frac{1}{1 + \frac{1}{4}} = \frac{1}{\frac{5}{4}} = \frac{4}{5} \] ### Final Answer Thus, the value of \( \sin(x+y) \) is: \[ \sin(x+y) = \frac{4}{5} \]
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 8|9 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 9|10 Videos
  • TRIGONOMETRIC FUNCTIONS AND IDENTITIES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 6|8 Videos
  • TRIGONOMETRIC EQUATIONS AND INEQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • VECTOR ALGEBRA

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|9 Videos

Similar Questions

Explore conceptually related problems

If cosx+cosy+cosalpha=0 and sinx + siny + sinalpha=0 , then cot((x+y)/2)=

If 3cosx + 2cos3x=cosy , 3sinx + 2sin3x =siny , then cos2x equals

If cosx+cosy+cosalpha=0 and sinx+siny+sinalpha=0 then cot((x+y)/2)=

If cosx+cosy+cosz=sinx+siny+sinz=0" then "cos(x-y)=

Prove that: (cosx+cosy)^2+(sinx-siny)^2 =4cos^2 (x+y)/2

If sinx =cosx and x is acute, state the value of x.

The acute angle between the planes 2x-y+z=6 and x+y+2z=3 is

Prove that: (cosx-cosy)^2+(sinx-siny)^2=4sin^2 (x-y)/2

If cosx + cosy + cosz = 0 and sinx + siny + sinz =0 , then show that cos (x-y) + cos(y - z) + cos(z - x) = - 3/2.

If cosx= tany, cosy= tanz and cosz= tanx , prove that sinx= siny= sinz = sin18^@