Home
Class 12
MATHS
If f : RrarrR, f(x)=x^(3) and g : Rrar...

If f : `RrarrR, f(x)=x^(3)` and g : `RrarrR`, g (x) =`2x^(2)+1`, and R is the set of real number, then find fog (x) and gof (x).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the compositions of the functions \( f \) and \( g \). The functions are defined as follows: - \( f(x) = x^3 \) - \( g(x) = 2x^2 + 1 \) We need to find \( f \circ g(x) \) (denoted as \( fog(x) \)) and \( g \circ f(x) \) (denoted as \( gof(x) \)). ### Step 1: Find \( fog(x) \) 1. **Identify \( g(x) \)**: \[ g(x) = 2x^2 + 1 \] 2. **Substitute \( g(x) \) into \( f \)**: \[ fog(x) = f(g(x)) = f(2x^2 + 1) \] 3. **Apply the function \( f \)**: \[ f(2x^2 + 1) = (2x^2 + 1)^3 \] 4. **Expand \( (2x^2 + 1)^3 \)** using the binomial expansion or the identity \( (a + b)^3 = a^3 + b^3 + 3ab(a + b) \): - Let \( a = 2x^2 \) and \( b = 1 \): \[ = (2x^2)^3 + 1^3 + 3(2x^2)(1)(2x^2 + 1) \] \[ = 8x^6 + 1 + 6x^2(2x^2 + 1) \] \[ = 8x^6 + 1 + 12x^4 + 6x^2 \] 5. **Combine like terms**: \[ fog(x) = 8x^6 + 12x^4 + 6x^2 + 1 \] ### Step 2: Find \( gof(x) \) 1. **Identify \( f(x) \)**: \[ f(x) = x^3 \] 2. **Substitute \( f(x) \) into \( g \)**: \[ gof(x) = g(f(x)) = g(x^3) \] 3. **Apply the function \( g \)**: \[ g(x^3) = 2(x^3)^2 + 1 \] \[ = 2x^6 + 1 \] ### Final Results - \( fog(x) = 8x^6 + 12x^4 + 6x^2 + 1 \) - \( gof(x) = 2x^6 + 1 \)
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

If f : R to R , f (x) =x ^(3) and g: R to R , g (x) = 2x ^(2) +1, and R is the set of real numbers then find fog(x) and gof (x).

If f : R rarr R, f(x) = x^(2) + 2x - 3 and g : R rarr R, g(x) = 3x - 4 then the value of fog (x) is

If f(x)=sqrt(x+3) and g(x)=x^2+1 be two real functions, then find fog and gof .

Find fog if f(x)= x-2 and g(x) = 3x

If f(x)=sqrtx(x > 0) and g(x)=x^2-1 are two real functions, find fog and gof is fog=gof ?

If f(x)=sqrtx(x > 0) and g(x)=x^2-1 are two real functions, find fog and gof is fog=gof ?

Let : R->R ; f(x)=sinx and g: R->R ; g(x)=x^2 find fog and gof .

Let f(x) = x^(2) + 2x +5 and g(x) = x^(3) - 1 be two real functions. Find (f+g)(x), (f-g)(x), (fg)(x) and ((f)/(g))(x) .

If f(x) = -1 +|x-1|, -1 le x le 3 " and " g(x)=2-|x+1|, -2 le x le 2, then find fog(x) " and " gof(x).

Find fog(2) and gof(1) when: f: R rarr R ;f(x)=x^2+8 and g: R rarr R ;g(x)=3x^3+1.