Home
Class 12
MATHS
Evaluate : int(x(1+x^(2)))/(1+x^(4))dx....

Evaluate : `int(x(1+x^(2)))/(1+x^(4))dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x(1+x^2)}{1+x^4} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = x^2 \). Then, the differential \( dt = 2x \, dx \), which implies \( x \, dx = \frac{dt}{2} \). ### Step 2: Rewrite the Integral Substituting \( t \) into the integral, we have: \[ \int \frac{x(1+x^2)}{1+x^4} \, dx = \int \frac{1}{1+t^2} \cdot \frac{dt}{2} \] This simplifies to: \[ \frac{1}{2} \int \frac{1+t}{1+t^2} \, dt \] ### Step 3: Separate the Integral Now, we can separate the integral: \[ \frac{1}{2} \left( \int \frac{1}{1+t^2} \, dt + \int \frac{t}{1+t^2} \, dt \right) \] ### Step 4: Evaluate Each Integral 1. The first integral \( \int \frac{1}{1+t^2} \, dt \) is a standard integral: \[ \int \frac{1}{1+t^2} \, dt = \tan^{-1}(t) \] 2. For the second integral \( \int \frac{t}{1+t^2} \, dt \), we can use the substitution \( u = 1 + t^2 \), which gives \( du = 2t \, dt \) or \( dt = \frac{du}{2t} \): \[ \int \frac{t}{1+t^2} \, dt = \frac{1}{2} \int \frac{1}{u} \, du = \frac{1}{2} \ln|u| + C = \frac{1}{2} \ln(1+t^2) \] ### Step 5: Combine the Results Putting it all together, we have: \[ \frac{1}{2} \left( \tan^{-1}(t) + \frac{1}{2} \ln(1+t^2) \right) + C \] ### Step 6: Substitute Back Now, substituting back \( t = x^2 \): \[ \frac{1}{2} \tan^{-1}(x^2) + \frac{1}{4} \ln(1+x^4) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{x(1+x^2)}{1+x^4} \, dx = \frac{1}{2} \tan^{-1}(x^2) + \frac{1}{4} \ln(1+x^4) + C \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^(1/2))/(1+x^(3/4))dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate: int(x^(1//2))/(1+x^(3//4))\ dx

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate : int(1+x^2)/(1+x^4)dx

Evaluate : int (x)/(1+x^(4)) "dx "

Evaluate : int (x)/(1+x^(4)) "dx "

Evaluate : int (1)/(4-x^(2)) dx

Evaluate: int(sqrt(1+x^2))/(x^4)dx

Evaluate : int (x^(4))/(x^(2)+1) " dx "