Home
Class 12
MATHS
Evaluate : int(-6)^(3)|x+3|dx...

Evaluate : `int_(-6)^(3)|x+3|dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \(\int_{-6}^{3} |x + 3| \, dx\), we need to consider the modulus function, which requires us to break the integral into parts based on the point where the expression inside the modulus changes sign. ### Step-by-Step Solution: 1. **Identify the point where the expression inside the modulus is zero:** \[ x + 3 = 0 \implies x = -3 \] This means we will split the integral at \(x = -3\). 2. **Set up the integral with the appropriate limits:** We can express the integral as: \[ \int_{-6}^{3} |x + 3| \, dx = \int_{-6}^{-3} |x + 3| \, dx + \int_{-3}^{3} |x + 3| \, dx \] 3. **Determine the sign of \(x + 3\) in each interval:** - For \(x < -3\) (i.e., from \(-6\) to \(-3\)), \(x + 3 < 0\), so \(|x + 3| = -(x + 3)\). - For \(x \geq -3\) (i.e., from \(-3\) to \(3\)), \(x + 3 \geq 0\), so \(|x + 3| = x + 3\). 4. **Rewrite the integral based on the sign of the expression:** \[ \int_{-6}^{3} |x + 3| \, dx = \int_{-6}^{-3} -(x + 3) \, dx + \int_{-3}^{3} (x + 3) \, dx \] 5. **Evaluate the first integral:** \[ \int_{-6}^{-3} -(x + 3) \, dx = -\int_{-6}^{-3} (x + 3) \, dx \] Now, compute: \[ = -\left[ \frac{x^2}{2} + 3x \right]_{-6}^{-3} \] Calculate the limits: \[ = -\left[ \left( \frac{(-3)^2}{2} + 3(-3) \right) - \left( \frac{(-6)^2}{2} + 3(-6) \right) \right] \] \[ = -\left[ \left( \frac{9}{2} - 9 \right) - \left( 18 - 18 \right) \right] \] \[ = -\left[ \frac{9}{2} - 9 \right] = -\left[ \frac{9}{2} - \frac{18}{2} \right] = -\left[ -\frac{9}{2} \right] = \frac{9}{2} \] 6. **Evaluate the second integral:** \[ \int_{-3}^{3} (x + 3) \, dx = \left[ \frac{x^2}{2} + 3x \right]_{-3}^{3} \] Calculate the limits: \[ = \left[ \left( \frac{3^2}{2} + 3(3) \right) - \left( \frac{(-3)^2}{2} + 3(-3) \right) \right] \] \[ = \left[ \left( \frac{9}{2} + 9 \right) - \left( \frac{9}{2} - 9 \right) \right] \] \[ = \left[ \frac{9}{2} + \frac{18}{2} - \left( \frac{9}{2} - \frac{18}{2} \right) \right] \] \[ = \left[ \frac{27}{2} - \frac{-9}{2} \right] = \frac{27}{2} + \frac{9}{2} = \frac{36}{2} = 18 \] 7. **Combine the results:** \[ \int_{-6}^{3} |x + 3| \, dx = \frac{9}{2} + 18 = \frac{9}{2} + \frac{36}{2} = \frac{45}{2} \] ### Final Answer: \[ \int_{-6}^{3} |x + 3| \, dx = \frac{45}{2} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate int _(-6) ^(3) |x+3| dx

Evaluate : int_(-1)^2|x^3-x|\ dx

Evaluate : int_(-1)^2|x^3-x|\ dx

Evaluate: int3x^(6)dx

Evaluate int_(1)^(3)x^(3)dx

Evaluate: int(x^3-1)^(1/3)x^5dx

Evaluate: int_(pi/6)^(pi/3)(dx)/(1+sqrt(tanx))

Evaluate: int2^(x)3^(x)dx

Evaluate int(x-1)(x-3)\dx

Evaluate int(2-x).x^3\dx