Home
Class 12
MATHS
Solve the following system of linear equ...

Solve the following system of linear equations using matrix method :
`1/(x)+1/(y)+1/(z)=9`
`2/(x)+5/(y)+7/(z)=52`
`2/(x)+1/(y)-1/(z)=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given system of linear equations using the matrix method, we first need to rewrite the equations in a more manageable form. The equations provided are: 1. \( \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 9 \) 2. \( \frac{2}{x} + \frac{5}{y} + \frac{7}{z} = 52 \) 3. \( \frac{2}{x} + \frac{1}{y} - \frac{1}{z} = 0 \) ### Step 1: Substitute Variables Let: - \( a = \frac{1}{x} \) - \( b = \frac{1}{y} \) - \( c = \frac{1}{z} \) Now, we can rewrite the equations as: 1. \( a + b + c = 9 \) 2. \( 2a + 5b + 7c = 52 \) 3. \( 2a + b - c = 0 \) ### Step 2: Write in Matrix Form We can express the system of equations in matrix form \( Ax = B \), where: \[ A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 5 & 7 \\ 2 & 1 & -1 \end{bmatrix}, \quad x = \begin{bmatrix} a \\ b \\ c \end{bmatrix}, \quad B = \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix} \] ### Step 3: Calculate the Determinant of Matrix A To find the inverse of matrix \( A \), we first need to calculate its determinant \( |A| \): \[ |A| = 1 \cdot \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} \] Calculating the minors: 1. \( \begin{vmatrix} 5 & 7 \\ 1 & -1 \end{vmatrix} = (5)(-1) - (7)(1) = -5 - 7 = -12 \) 2. \( \begin{vmatrix} 2 & 7 \\ 2 & -1 \end{vmatrix} = (2)(-1) - (7)(2) = -2 - 14 = -16 \) 3. \( \begin{vmatrix} 2 & 5 \\ 2 & 1 \end{vmatrix} = (2)(1) - (5)(2) = 2 - 10 = -8 \) Putting it all together: \[ |A| = 1(-12) - 1(-16) + 1(-8) = -12 + 16 - 8 = -4 \] ### Step 4: Calculate the Inverse of Matrix A The inverse of \( A \) can be calculated using the adjoint method. First, we find the matrix of cofactors and then the adjoint. The cofactor matrix \( C \) is calculated as follows: \[ C = \begin{bmatrix} -12 & 16 & -8 \\ 8 & -4 & -2 \\ -3 & -4 & 3 \end{bmatrix} \] The adjoint \( \text{adj}(A) \) is the transpose of the cofactor matrix: \[ \text{adj}(A) = \begin{bmatrix} -12 & 8 & -3 \\ 16 & -4 & -4 \\ -8 & -2 & 3 \end{bmatrix} \] Now, the inverse \( A^{-1} \) is given by: \[ A^{-1} = \frac{1}{|A|} \text{adj}(A) = -\frac{1}{4} \begin{bmatrix} -12 & 8 & -3 \\ 16 & -4 & -4 \\ -8 & -2 & 3 \end{bmatrix} \] ### Step 5: Multiply \( A^{-1} \) by \( B \) Now we can find \( x \) by calculating \( A^{-1}B \): \[ x = A^{-1}B = -\frac{1}{4} \begin{bmatrix} -12 & 8 & -3 \\ 16 & -4 & -4 \\ -8 & -2 & 3 \end{bmatrix} \begin{bmatrix} 9 \\ 52 \\ 0 \end{bmatrix} \] Calculating each element: 1. First row: \( -\frac{1}{4}((-12)(9) + (8)(52) + (-3)(0)) = -\frac{1}{4}(-108 + 416) = -\frac{1}{4}(308) = -77 \) 2. Second row: \( -\frac{1}{4}((16)(9) + (-4)(52) + (-4)(0)) = -\frac{1}{4}(144 - 208) = -\frac{1}{4}(-64) = 16 \) 3. Third row: \( -\frac{1}{4}((-8)(9) + (-2)(52) + (3)(0)) = -\frac{1}{4}(-72 - 104) = -\frac{1}{4}(-176) = 44 \) Thus, we have: \[ x = \begin{bmatrix} 77 \\ 16 \\ 44 \end{bmatrix} \] ### Step 6: Back Substitute to Find \( x, y, z \) Since \( a = 77, b = 16, c = 44 \): - \( x = \frac{1}{a} = \frac{1}{77} \) - \( y = \frac{1}{b} = \frac{1}{16} \) - \( z = \frac{1}{c} = \frac{1}{44} \) ### Final Solution Thus, the solution to the system of equations is: \[ x = \frac{1}{77}, \quad y = \frac{1}{16}, \quad z = \frac{1}{44} \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

Solve the following system of linear equations by matrix method: 3x-2y=7, 5x+3y=1

Solve the following system of linear equations using matrix method : 3x + y + z = 1, 2x + 2z =0, 5x + y + 2z = 0 .

Solve the following system of linear equations using matrices : x-2y=10,2x-y-z=8,-2y+z=7

Solve the following system of equations by matrix method: 3x+7y=4,\ \ x+2y=-1

Solve the following system of equations, using matrix method. x+2y+z=7,x+3z=11 ,2x-3y=1

Solve the following system of equations, using matrix method. x+2y+z=7,x+3z=11 ,2x-3y=1

Solve the following system of linear equations by matrix method: x+y+z=3,2x-y+z=2,x-2y+3z=2

Solve the following system of linear equations by matrix method: 2x+3y+3z=1,2x+2y+3z=2,x-2y+2z=3

Solve the following system of equations using matrix method: 2/x + 3/y + 10/z = 4 4/x - 6/y + 5/z=1 6/x + 9/y - 20/z=2

Solve the following system of equations by matrix method: x+y-z=3 , 2x+3y+z=10 ,3x-y-7z=1