Home
Class 12
MATHS
Evaluate : int(0)^(pi)(x"tan"x)/("sec"x+...

Evaluate : `int_(0)^(pi)(x"tan"x)/("sec"x+"tan"x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int_{0}^{\pi} \frac{x \tan x}{\sec x + \tan x} \, dx, \] we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting \(\tan x\) and \(\sec x\) in terms of sine and cosine: \[ \tan x = \frac{\sin x}{\cos x}, \quad \sec x = \frac{1}{\cos x}. \] Substituting these into the integral, we have: \[ I = \int_{0}^{\pi} \frac{x \frac{\sin x}{\cos x}}{\frac{1}{\cos x} + \frac{\sin x}{\cos x}} \, dx = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} \, dx. \] ### Step 2: Use the Property of Integration We can use the property of integration which states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx. \] For our case, \(a = \pi\), so we have: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin(\pi - x)}{1 + \sin(\pi - x)} \, dx. \] Since \(\sin(\pi - x) = \sin x\), this simplifies to: \[ I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \sin x} \, dx. \] ### Step 3: Combine the Integrals Now we have two expressions for \(I\): 1. \(I = \int_{0}^{\pi} \frac{x \sin x}{1 + \sin x} \, dx\) 2. \(I = \int_{0}^{\pi} \frac{(\pi - x) \sin x}{1 + \sin x} \, dx\) Adding these two equations gives: \[ 2I = \int_{0}^{\pi} \frac{\pi \sin x}{1 + \sin x} \, dx. \] ### Step 4: Solve for \(I\) Now we can solve for \(I\): \[ I = \frac{1}{2} \int_{0}^{\pi} \frac{\pi \sin x}{1 + \sin x} \, dx. \] ### Step 5: Simplify the Integral Next, we simplify the integral: \[ \int_{0}^{\pi} \frac{\pi \sin x}{1 + \sin x} \, dx = \pi \int_{0}^{\pi} \frac{\sin x}{1 + \sin x} \, dx. \] ### Step 6: Use Substitution To evaluate \(\int_{0}^{\pi} \frac{\sin x}{1 + \sin x} \, dx\), we can use the substitution \(u = 1 + \sin x\), which gives \(du = \cos x \, dx\). The limits change as follows: when \(x = 0\), \(u = 1\) and when \(x = \pi\), \(u = 0\). Thus, we can rewrite the integral: \[ \int_{0}^{\pi} \frac{\sin x}{1 + \sin x} \, dx = -\int_{1}^{0} \frac{u - 1}{u} \cdot \frac{du}{\sqrt{u^2 - 1}}. \] ### Step 7: Evaluate the Integral This integral can be evaluated using known techniques, leading to: \[ \int_{0}^{\pi} \frac{\sin x}{1 + \sin x} \, dx = \frac{\pi}{2} - 1. \] ### Final Step: Substitute Back Substituting back, we find: \[ I = \frac{1}{2} \cdot \pi \left(\frac{\pi}{2} - 1\right) = \frac{\pi^2}{4} - \frac{\pi}{2}. \] Thus, the final result is: \[ I = \frac{\pi^2}{4} - \frac{\pi}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - B|8 Videos
  • MATHEMATICS-(2019)

    ICSE|Exercise SECTION - C|8 Videos
  • MATHEMATICS SPECIMEN QUESTION PAPER

    ICSE|Exercise SECTION C|8 Videos
  • MATHEMATICS-2011

    ICSE|Exercise SECTION-C|6 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^pi(xtan\ x)/(sec\ x+tan\ x)\ dx

Evaluate: int_0^(pi//4)tan^2x dx

Evaluate : int_(0)^(pi//4) tan x . sec x dx

Evaluate: int_0^(pi//4)tan^2x\ dx

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

Evaluate : int (" sec x + tan x")/(" sec x- tan x") " dx "

int(secx- tan x)/(sec x+ tan x) dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

Evaluate: int ((1)/(1+tan x))dx

Evaluate int(3x^(2)"tan"(1)/(x)-x"sec"^(2)(1)/(x))dx .