Home
Class 9
MATHS
Factorise: (i) 4sqrt(3)x^(2) + 5x-2sqrt(...

Factorise: (i) `4sqrt(3)x^(2) + 5x-2sqrt(3)`
(ii) `7sqrt(2)x^(2)-10x - 4sqrt(2)`

Text Solution

AI Generated Solution

The correct Answer is:
Let's factorise the given expressions step by step. ### (i) Factorise: \( 4\sqrt{3}x^2 + 5x - 2\sqrt{3} \) **Step 1: Identify the coefficients** - The coefficients are \( a = 4\sqrt{3} \), \( b = 5 \), and \( c = -2\sqrt{3} \). **Step 2: Multiply \( a \) and \( c \)** - Calculate \( ac = 4\sqrt{3} \times -2\sqrt{3} = -8 \times 3 = -24 \). **Step 3: Find two numbers that multiply to \( ac \) and add to \( b \)** - We need two numbers that multiply to \(-24\) and add to \(5\). These numbers are \(8\) and \(-3\). **Step 4: Rewrite the middle term using these two numbers** - Rewrite \( 5x \) as \( 8x - 3x \): \[ 4\sqrt{3}x^2 + 8x - 3x - 2\sqrt{3} \] **Step 5: Group the terms** - Group the first two and the last two terms: \[ (4\sqrt{3}x^2 + 8x) + (-3x - 2\sqrt{3}) \] **Step 6: Factor out the common factors** - From the first group, factor out \( 4x \): \[ 4x(\sqrt{3}x + 2) \] - From the second group, factor out \(-\sqrt{3}\): \[ -\sqrt{3}(3x + 2) \] **Step 7: Combine the factored terms** - Now we have: \[ 4x(\sqrt{3}x + 2) - \sqrt{3}(3x + 2) \] - Notice that \( \sqrt{3}x + 2 \) is common: \[ (4x - \sqrt{3})(\sqrt{3}x + 2) \] **Final Factorised Form:** \[ (4x - \sqrt{3})(\sqrt{3}x + 2) \]
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 2sqrt(3)x^(2) + x - 5sqrt(3)

Factorise : 7sqrt(2)x^(2) - 10 x - 4sqrt(2)

Solve: 4sqrt(3)x^(2)+5x-2sqrt(3)=0.

Factorize each of the following expressions : (i) 4sqrt(3)x^2+5x-2sqrt(3) , (ii) 5sqrt(5)x^2+30 x+8sqrt(5)

Foctorise : 7sqrt2 x^(2) - 10 x - 4sqrt2

Factorise: sqrt5 x^(2) + 2x- 3sqrt5

Factorise sqrt(3)x^(2)+10x+3sqrt(3)

An equilateral triangle whose two vertices are (-2, 0) and (2, 0) and which lies in the first and second quadrants only is circumscribed by a circle whose equation is : (A) sqrt(3)x^2 + sqrt(3)y^2 - 4x +4 sqrt(3)y = 0 (B) sqrt(3)x^2 + sqrt(3)y^2 - 4x - 4 sqrt(3)y = 0 (C) sqrt(3)x^2 + sqrt(3)y^2 - 4y + 4 sqrt(3)y = 0 (D) sqrt(3)x^2 + sqrt(3)y^2 - 4y - 4 sqrt(3) = 0

If sum_(i=1)^n(x_i+1)^2=9n and sum_(i=1)^n(x_i-1)^2=5n , then standard deviation of these 'n' observations (x_1) is: (1) 2sqrt(3) (2) sqrt(3) (3) sqrt(5) (4) 3sqrt(2)

Find all possible values of the following expressions : (i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)