Home
Class 9
MATHS
Factorise: x^(4) + x^(2)+1...

Factorise: `x^(4) + x^(2)+1`

Text Solution

AI Generated Solution

The correct Answer is:
To factorise the expression \( x^4 + x^2 + 1 \), we can follow these steps: ### Step 1: Rewrite the expression We start with the expression: \[ x^4 + x^2 + 1 \] We can add and subtract \( x^2 \) to help us rearrange the terms: \[ x^4 + x^2 + 1 = x^4 + 2x^2 + 1 - x^2 \] ### Step 2: Group the terms Now we can group the first three terms: \[ = (x^4 + 2x^2 + 1) - x^2 \] ### Step 3: Recognize a perfect square The expression \( x^4 + 2x^2 + 1 \) can be recognized as a perfect square: \[ = (x^2 + 1)^2 - x^2 \] ### Step 4: Apply the difference of squares Now we have a difference of squares, which can be factored using the identity \( a^2 - b^2 = (a + b)(a - b) \): Let \( a = x^2 + 1 \) and \( b = x \): \[ = (x^2 + 1 + x)(x^2 + 1 - x) \] ### Step 5: Write the final factorized form Thus, the factorized form of \( x^4 + x^2 + 1 \) is: \[ (x^2 + x + 1)(x^2 - x + 1) \] ### Summary of the Factorization The final factorization of the expression \( x^4 + x^2 + 1 \) is: \[ (x^2 + x + 1)(x^2 - x + 1) \] ---
Promotional Banner

Topper's Solved these Questions

  • FACTORISATION

    ICSE|Exercise Questions|40 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (A)|20 Videos
  • FACTORISATION

    ICSE|Exercise Exercise 5 (E)|23 Videos
  • EXPANSIONS

    ICSE|Exercise 4 Marks questions|10 Videos
  • GRAPHICAL SOLUTION(SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS, GRAPHICALLY)

    ICSE|Exercise EXAMPLES|6 Videos

Similar Questions

Explore conceptually related problems

Factorise : 4x^(4) - x^(2) - 12x - 36

Factorise : x^(2) + (a^(2) -1)/(a)x-1

Factorise: x^(4) + y^(4) - 27x^(2)y^(2)

Factorise : x^(4) + x^(2)y^(2) + y^(4)

Factorise : x^(4) + y^(4) - 3x^(2)y^(2)

Factorise : x^(4) + y^(4) - 23x^(2)y^(2)

Factorise : x^(2) - 25

Factorise: x^(2) + (a^(2)+1)/ax +1

Factorise : (v) x^4 - 5x^(2) - 36

Factorise : 4x^(4) + 9y^(4) + 11x^(2)y^(2)