Home
Class 12
MATHS
If tan^(-1) x =pi/10 for some "x"in R ,...

If `tan^(-1) x =pi/10` for some `"x"in R` , then the value of `cot^(-1)` x is

A

`(pi)/(2)`

B

`(2pi)/(10)`

C

`(3pi)/(10)`

D

`(4pi)/(10)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION-B|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

If sin^(-1) x = pi//5 , for some x in (-1, 1) , then find the value of cos^(-1) x

The solution set of inequality (cot^(-1)x)(tan^(-1)x)+(2-pi/2)cot^(-1)x-3tan^(-1)x-3(2-pi/2)>0 is (a , b), then the value of cot^(-1)a+cot^(-1)b is____

If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

If tan^(-1)x+tan^(-1)y=pi/4, then write the value of x+y+x ydot

The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is

If tan^-1(1/y)=-pi+cot^-1 y, where y=x^2-3x+2, then find the value of x

The value of sin[cot^(-1){cos(tan^(-1) x)}] is

It is given that A=(tan^(-1)x)^(3)+(cot^(-1)x)^(3) where x gt 0 and B=(cos^(-1)t)^(2)+(sin^(-1)t)^(2) where t in [0, (1)/(sqrt(2))] , and sin^(-1)x+cos^(-1)x=(pi)/(2) for -1 le x le 1 and tan^(-1)x +cot^(-1)x=(pi)/(2) for x in R . The maximum value of B is :

STATEMENT -1 : The value of tan^(-1)x+tan^(-1)(1/x)=pi/2, AA x in R -{0} . and STATEMENT -2 : The value of tan^(-1).(1/x)={:{(cot^(-1)x,x gt0),(-pi+cot^(-1)x,x lt0):}