Home
Class 12
MATHS
The value of int(0)^(1) (1)/(2x-3)dx is...

The value of `int_(0)^(1) (1)/(2x-3)dx` is

A

log 3

B

`(1)/(2) log 3`

C

`-(1)/(2) log 3`

D

0

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION-B|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(1)({2x}-1)({3x}-1)dx , (where {} denotes fractional part opf x) is equal to :

The value of int_(0)^(1) tan^(-1)((2x-1)/(1+x-x^(2)))dx is

The value of int_(0)^(3) xsqrt(1+x)dx , is

int_(0)^(1) (1)/(x^(2) +2x+3)dx

int_(0)^(1) (1)/(x^(2)+x+1)dx

If int_(0)^(1)e^(x^(2))(x-a)dx=0 , then the value of int_(0)^(1)e^(X^(2))dx is euqal to

int_(0)^(1) (1)/(1+x+2x^(2))dx

Find the value of int_(0)^(1)root(3)(2x^(3)-3x^(2)-x+1)dx .

The value of int _(0)^(1) ((x ^(6) -x ^(3)))/((2x ^(3)+1)^(3)) dx is equal to :

The value of int_(0)^(pi//2) (cos3x+1)/(2 cos x-1) dx is