Home
Class 12
MATHS
Evaluate : int (2 sin 2 theta- cos theta...

Evaluate : `int (2 sin 2 theta- cos theta)/(6 - cos^(2) theta- 4 sin theta) d theta`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{2 \sin 2\theta - \cos \theta}{6 - \cos^2 \theta - 4 \sin \theta} \, d\theta, \] we will follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral in a more manageable form. We know that \(\sin 2\theta = 2 \sin \theta \cos \theta\), so we can substitute this into the integral: \[ \int \frac{2(2 \sin \theta \cos \theta) - \cos \theta}{6 - \cos^2 \theta - 4 \sin \theta} \, d\theta = \int \frac{4 \sin \theta \cos \theta - \cos \theta}{6 - \cos^2 \theta - 4 \sin \theta} \, d\theta. \] ### Step 2: Factor Out Common Terms Next, we can factor out \(\cos \theta\) from the numerator: \[ = \int \frac{\cos \theta (4 \sin \theta - 1)}{6 - \cos^2 \theta - 4 \sin \theta} \, d\theta. \] ### Step 3: Change of Variables To simplify the integral further, we will use the substitution \(u = \sin \theta\). Then, \(du = \cos \theta \, d\theta\). The integral becomes: \[ \int \frac{(4u - 1)}{6 - (1 - u^2) - 4u} \, du. \] ### Step 4: Simplify the Denominator Now, simplify the denominator: \[ 6 - (1 - u^2) - 4u = 6 - 1 + u^2 - 4u = u^2 - 4u + 5. \] So, we have: \[ \int \frac{(4u - 1)}{u^2 - 4u + 5} \, du. \] ### Step 5: Split the Integral We can split the integral into two parts: \[ \int \frac{4u}{u^2 - 4u + 5} \, du - \int \frac{1}{u^2 - 4u + 5} \, du. \] ### Step 6: Evaluate the First Integral For the first integral, we can use the substitution \(v = u^2 - 4u + 5\), which gives \(dv = (2u - 4) \, du\). This requires some manipulation, but ultimately we can find: \[ \int \frac{4u}{u^2 - 4u + 5} \, du = 2 \ln |u^2 - 4u + 5| + C_1. \] ### Step 7: Evaluate the Second Integral For the second integral, we can complete the square in the denominator: \[ u^2 - 4u + 5 = (u - 2)^2 + 1. \] Thus, the second integral becomes: \[ \int \frac{1}{(u - 2)^2 + 1} \, du = \tan^{-1}(u - 2) + C_2. \] ### Step 8: Combine Results Combining both results, we have: \[ 2 \ln |u^2 - 4u + 5| - \tan^{-1}(u - 2) + C. \] ### Step 9: Substitute Back Finally, we substitute back \(u = \sin \theta\): \[ = 2 \ln |(\sin \theta)^2 - 4 \sin \theta + 5| - \tan^{-1}(\sin \theta - 2) + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{2 \sin 2\theta - \cos \theta}{6 - \cos^2 \theta - 4 \sin \theta} \, d\theta = 2 \ln |\sin^2 \theta - 4 \sin \theta + 5| - \tan^{-1}(\sin \theta - 2) + C. \]
Promotional Banner

Topper's Solved these Questions

  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise SECTION-B|10 Videos
  • SELF ASSESSMENT PAPER 2

    ICSE|Exercise Section - C|12 Videos
  • SELF ASSESSMENT PAPER 10

    ICSE|Exercise SECTION B|3 Videos
  • SELF ASSESSMENT PAPER 9

    ICSE|Exercise SECTION C|10 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intcos 2 theta ln((cos theta+sin theta)/(cos theta-sin theta))d theta

sin^(3)theta + sin theta - sin theta cos^(2)theta =

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

(sin theta + sin 2 theta)/( 1 + cos theta + cos 2 theta) = tan theta.

int (d theta)/((sin theta - 2 cos theta)(2 sin theta + cos theta))

Prove that : sin theta cos^3 theta - cos theta sin^3 theta = 1/4 sin4theta .

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

Prove that : (1+ sin theta - cos theta) / (1+ sin theta + cos theta ) = tan (theta/2)

Solve : 3-2 cos theta -4 sin theta - cos 2theta+sin 2theta=0 .

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta