Home
Class 11
PHYSICS
The angle between the vectors 4hat(i)+3h...

The angle between the vectors `4hat(i)+3hat(j)-4hat(k)` and `3hat(i)+4hat(j)+6hat(k)` is :

A

`0^(@)`

B

`45^(@)`

C

`60^(@)`

D

`90^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the angle between the vectors \( \vec{A} = 4\hat{i} + 3\hat{j} - 4\hat{k} \) and \( \vec{B} = 3\hat{i} + 4\hat{j} + 6\hat{k} \), we can use the dot product formula. The angle \( \theta \) between two vectors can be calculated using the formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] ### Step 1: Calculate the dot product \( \vec{A} \cdot \vec{B} \) The dot product \( \vec{A} \cdot \vec{B} \) is calculated as follows: \[ \vec{A} \cdot \vec{B} = (4)(3) + (3)(4) + (-4)(6) \] Calculating each term: - \( 4 \times 3 = 12 \) - \( 3 \times 4 = 12 \) - \( -4 \times 6 = -24 \) Now, summing these values: \[ \vec{A} \cdot \vec{B} = 12 + 12 - 24 = 0 \] ### Step 2: Calculate the magnitudes \( |\vec{A}| \) and \( |\vec{B}| \) The magnitude of vector \( \vec{A} \) is given by: \[ |\vec{A}| = \sqrt{(4^2) + (3^2) + (-4^2)} = \sqrt{16 + 9 + 16} = \sqrt{41} \] The magnitude of vector \( \vec{B} \) is given by: \[ |\vec{B}| = \sqrt{(3^2) + (4^2) + (6^2)} = \sqrt{9 + 16 + 36} = \sqrt{61} \] ### Step 3: Substitute values into the cosine formula Now, substituting the values into the cosine formula: \[ \cos \theta = \frac{0}{|\vec{A}| |\vec{B}|} = \frac{0}{\sqrt{41} \cdot \sqrt{61}} = 0 \] ### Step 4: Determine the angle \( \theta \) Since \( \cos \theta = 0 \), this implies: \[ \theta = 90^\circ \] ### Conclusion The angle between the vectors \( \vec{A} \) and \( \vec{B} \) is \( 90^\circ \).

To find the angle between the vectors \( \vec{A} = 4\hat{i} + 3\hat{j} - 4\hat{k} \) and \( \vec{B} = 3\hat{i} + 4\hat{j} + 6\hat{k} \), we can use the dot product formula. The angle \( \theta \) between two vectors can be calculated using the formula: \[ \cos \theta = \frac{\vec{A} \cdot \vec{B}}{|\vec{A}| |\vec{B}|} \] ### Step 1: Calculate the dot product \( \vec{A} \cdot \vec{B} \) ...
Promotional Banner

Topper's Solved these Questions

  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION - A (Answer the following questions briefly and to the point:) |7 Videos
  • SAMPLE QUESTION PAPER 5

    ICSE|Exercise SECTION - B (Answer all questions.)|13 Videos
  • SAMPLE QUESTION PAPER 4

    ICSE|Exercise SECTION - D (Answer all questions.)|7 Videos
  • SAMPLE QUESTION PAPER-2

    ICSE|Exercise SECTION-D|10 Videos

Similar Questions

Explore conceptually related problems

Find the angle between the vectors 2 hat(i) - hat(j) - hat(k) and 3 hat(i) + 4 hat(j) - hat(k) .

Find the angle between the vectors hat(i)+3hat(j)+7hat(k) and 7hat(i)-hat(j)+8hat(k) .

The angle between two vectors given by 6hat(i)+6hat(j)-3hat(k) and 7hat(i)+4hat(j)+4hat(k) is

Find the angle between the vector vec(a) =2 hat(i) + 3hat(j) - 4 hat(k) and vec(b) = 4hat(i) +5 hat(j) - 2hat(k) .

The diagonals of a parallelogram are given by the vectors (3 hat(i) + hat(j) + 2hat(k)) and ( hat(i) - 3hat(j) + 4hat(k)) in m . Find the area of the parallelogram .

Find the angle between the vectors 5hat i+3 hat j+4 hat k and 6 hat i-8 hat j- hat k .

Vector vec(A)=hat(i)+hat(j)-2hat(k) and vec(B)=3hat(i)+3hat(j)-6hat(k) are :

Find the angle between the vectors hat i-2 hat j+3 hat k and 3 hat i-2 hat j+ hat kdot

The unit vactor parallel to the resultant of the vectors vec(A)=4hat(i)+3hat(j)+6hat(k) and vec(B)=-hat(i)+3hat(j)-8hat(k) is :-

The value of 'a' so that the vectors 2 hat(i) - 3hat(j) + 4hat(k) and a hat(i) + 6hat(j) - 8hat(k) are collinear