Home
Class 12
MATHS
The value of lim(x->0)((sinx-tanx)^2-(1-...

The value of `lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x)` equal to :

A

0

B

1

C

2

D

`1/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ \lim_{x \to 0} \frac{(\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5}{7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x} \] we will follow these steps: ### Step 1: Simplify the Numerator We start with the numerator: \[ (\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5 \] Using the identity \(\tan x = \frac{\sin x}{\cos x}\), we can rewrite \(\sin x - \tan x\): \[ \sin x - \tan x = \sin x - \frac{\sin x}{\cos x} = \sin x \left(1 - \frac{1}{\cos x}\right) = \sin x \left(\frac{\cos x - 1}{\cos x}\right) \] Using the small angle approximation, we know that as \(x \to 0\), \(\sin x \approx x\) and \(\cos x \approx 1 - \frac{x^2}{2}\). Thus, \[ \cos x - 1 \approx -\frac{x^2}{2} \] So, \[ \sin x - \tan x \approx \frac{x \cdot (-\frac{x^2}{2})}{1} = -\frac{x^3}{2} \] Now squaring this gives: \[ (\sin x - \tan x)^2 \approx \left(-\frac{x^3}{2}\right)^2 = \frac{x^6}{4} \] Next, we simplify \(1 - \cos 2x\): \[ 1 - \cos 2x = 2\sin^2 x \approx 2\left(\frac{x^2}{2}\right) = x^2 \] Thus, \[ (1 - \cos 2x)^4 \approx (x^2)^4 = x^8 \] Now substituting back into the numerator: \[ \frac{x^6}{4} - x^8 + x^5 = \frac{x^6}{4} + x^5 - x^8 \] ### Step 2: Simplify the Denominator Now, we simplify the denominator: \[ 7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x \] Using the small angle approximations: \[ \tan^{-1} x \approx x \quad \text{and} \quad \sin^{-1} x \approx x \] Thus, \[ 7(\tan^{-1} x)^7 \approx 7x^7, \quad (\sin^{-1} x)^6 \approx x^6, \quad \text{and} \quad 3\sin^5 x \approx 3x^5 \] So the denominator becomes: \[ 7x^7 + x^6 + 3x^5 \] ### Step 3: Combine and Factor Now we can rewrite our limit: \[ \lim_{x \to 0} \frac{\frac{x^6}{4} + x^5 - x^8}{7x^7 + x^6 + 3x^5} \] Factoring out \(x^5\) from both the numerator and denominator: Numerator: \[ x^5\left(\frac{x}{4} + 1 - x^3\right) \] Denominator: \[ x^5(7x^2 + x + 3) \] Thus, the limit simplifies to: \[ \lim_{x \to 0} \frac{\frac{x}{4} + 1 - x^3}{7x^2 + x + 3} \] ### Step 4: Evaluate the Limit Now we can substitute \(x = 0\): Numerator: \[ \frac{0}{4} + 1 - 0 = 1 \] Denominator: \[ 7(0)^2 + 0 + 3 = 3 \] Thus, the limit evaluates to: \[ \frac{1}{3} \] ### Final Answer The value of \[ \lim_{x \to 0} \frac{(\sin x - \tan x)^2 - (1 - \cos 2x)^4 + x^5}{7(\tan^{-1} x)^7 + (\sin^{-1} x)^6 + 3\sin^5 x} = \frac{1}{3} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(sin5x)/(tan3x)

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

lim_(x->0)(7xcosx-3sinx)/(4x+tanx)

Evaluate, lim_(xto0) (sinx-2sin3x+sin5x)/(x)

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The value of (lim_(x rarr 0) (tanx^((1)/(5)))/((tan^(-1)sqrtx)^(2))(log(1+5x))/(e^(3root5x)-1) is

the value of lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}

lim_(xrarr0) (1)/(x^(2))|(1-cos3x,log_(e)(1+4x)),(sin^(-1)(x^(x)-),tan^(-1)(2x))| is equal to