Home
Class 12
MATHS
Let a= lim(x->0)ln(cos2x)/(3x^2), b=lim...

Let `a= lim_(x->0)ln(cos2x)/(3x^2), b=lim_(x->0)(sin^(2)2x)/(x(1-e^x)), c=lim_(x->1)(sqrt(x)-x)/lnx`

A

`a lt b lt c`

B

`b lt c lt a`

C

`a lt c lt b`

D

`b lt a lt c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limits \( a \), \( b \), and \( c \) step by step, we will use L'Hôpital's rule where necessary. ### Step 1: Calculate \( a = \lim_{x \to 0} \frac{\ln(\cos(2x))}{3x^2} \) 1. **Substituting \( x = 0 \)**: \[ \ln(\cos(2 \cdot 0)) = \ln(1) = 0 \quad \text{and} \quad 3(0)^2 = 0 \] This gives the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Differentiate the numerator and denominator: \[ \text{Numerator: } \frac{d}{dx}[\ln(\cos(2x))] = \frac{-2\sin(2x)}{\cos(2x)} = -2\tan(2x) \] \[ \text{Denominator: } \frac{d}{dx}[3x^2] = 6x \] So, \[ a = \lim_{x \to 0} \frac{-2\tan(2x)}{6x} = \lim_{x \to 0} \frac{-\tan(2x)}{3x} \] 3. **Substituting \( x = 0 \)** again gives \( \frac{0}{0} \), so apply L'Hôpital's Rule again: \[ \frac{d}{dx}[-\tan(2x)] = -2\sec^2(2x) \] \[ a = \lim_{x \to 0} \frac{-2\sec^2(2x)}{3} = \frac{-2}{3} \] ### Step 2: Calculate \( b = \lim_{x \to 0} \frac{\sin^2(2x)}{x(1 - e^x)} \) 1. **Substituting \( x = 0 \)**: \[ \sin^2(2 \cdot 0) = 0 \quad \text{and} \quad 1 - e^0 = 0 \] This gives the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Rewrite the limit: \[ b = \lim_{x \to 0} \frac{4\sin(2x)\cos(2x)}{1 - e^x + xe^x} \] 3. **Differentiate**: \[ \text{Numerator: } \frac{d}{dx}[4\sin(2x)\cos(2x)] = 8\cos(2x)\cos(2x) - 8\sin(2x)\sin(2x) = 8\cos(2x)\cos(2x) - 8\sin^2(2x) \] \[ \text{Denominator: } \frac{d}{dx}[1 - e^x + xe^x] = -e^x + e^x + xe^x = xe^x \] So, \[ b = \lim_{x \to 0} \frac{8\cos^2(2x)}{e^x} = \frac{8}{1} = 8 \] ### Step 3: Calculate \( c = \lim_{x \to 1} \frac{\sqrt{x} - x}{\ln x} \) 1. **Substituting \( x = 1 \)**: \[ \sqrt{1} - 1 = 0 \quad \text{and} \quad \ln(1) = 0 \] This gives the indeterminate form \( \frac{0}{0} \). 2. **Apply L'Hôpital's Rule**: Differentiate: \[ \text{Numerator: } \frac{1}{2\sqrt{x}} - 1 \] \[ \text{Denominator: } \frac{1}{x} \] So, \[ c = \lim_{x \to 1} \frac{\frac{1}{2\sqrt{x}} - 1}{\frac{1}{x}} = \lim_{x \to 1} \frac{x(\frac{1}{2\sqrt{x}} - 1)}{1} = \frac{1}{2} - 1 = -\frac{1}{2} \] ### Summary of Results - \( a = -\frac{2}{3} \) - \( b = 8 \) - \( c = -\frac{1}{2} \) ### Final Comparison From the results: - \( c < a < b \)
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

lim_(x rarr0)(sin^2x)/(1-cosx)

Evaluate: lim_(x->0) (1-cos2x)/(x^2)

lim_(x->e) (lnx-1)/(x-e)

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

3. lim_(x rarr0)(sin x sin^(-1)x)/(x^(2))

lim_(x to 0) (cos 2x-1)/(cos x-1)

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

lim_(x->1)(x^2-x*lnx+lnx-1)/(x-1)