Home
Class 12
MATHS
lim (xto0)(((1+ x )^(2/x))/(e ^(2)))^((4...

`lim _(xto0)(((1+ x )^(2/x))/(e ^(2)))^((4)/(sin x))` is :

A

`e ^(4)`

B

`e ^(-4)`

C

`e ^(8)`

D

`e ^(-8)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \frac{(1 + x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} \), we can follow these steps: ### Step 1: Rewrite the limit We start by rewriting the limit in a more manageable form: \[ L = \lim_{x \to 0} \left( \frac{(1 + x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} \] ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides, we have: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \ln \left( \frac{(1 + x)^{\frac{2}{x}}}{e^2} \right) \] Using the properties of logarithms, this can be simplified to: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2}{x} \ln(1 + x) - 2 \right) \] ### Step 3: Simplify the expression Now we simplify the expression inside the limit: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2}{x} \ln(1 + x) - 2 \right) \] This can be rewritten as: \[ \ln L = \lim_{x \to 0} \frac{4}{\sin x} \left( \frac{2 \ln(1 + x)}{x} - 2 \right) \] ### Step 4: Evaluate the limit As \( x \to 0 \), we know that \( \ln(1 + x) \approx x - \frac{x^2}{2} + O(x^3) \). Therefore, \[ \frac{\ln(1 + x)}{x} \to 1 \text{ as } x \to 0 \] Thus, \[ \frac{2 \ln(1 + x)}{x} \to 2 \text{ as } x \to 0 \] This means: \[ \frac{2 \ln(1 + x)}{x} - 2 \to 0 \text{ as } x \to 0 \] Since \( \sin x \approx x \) as \( x \to 0 \), we can replace \( \sin x \) with \( x \): \[ \ln L = \lim_{x \to 0} \frac{4}{x} \cdot 0 = 0 \] ### Step 5: Exponentiate to find L Since \( \ln L = 0 \), we have: \[ L = e^0 = 1 \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( \frac{(1 + x)^{\frac{2}{x}}}{e^2} \right)^{\frac{4}{\sin x}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xto0)((e^(x)-1)/x)^(1//x)

lim_(xto0)(((1+x)^(1//x))/e)^(1/(sinx)) is equal to

Slove lim_(xto0)((1+x)^(1//x)-e)/x

The polynomial of least degree such that lim_(xto0)(1+(x^(2)+f(x))/(x^(2)))^(1//x)=e^(2) is

lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

Evaluate lim_(xto0) (cos^(-1)((1-x^(2))/(1+x^(2))))/(sin^(-1)x).

Evaluate lim_(xto0)((1+5x^(2))/(1+3x^(2)))^(1//x^(2))

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).