Home
Class 12
MATHS
lim (xtooo)3/x [(x)/(4)]=p/q where [.] d...

`lim _(xtooo)3/x [(x)/(4)]=p/q` where [.] denotes greatest integer function), then `p+q` (where p,q are relative prime) is:

A

2

B

7

C

5

D

6

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we start with the expression: \[ \lim_{x \to \infty} \frac{3}{x} \left[ \frac{x}{4} \right] \] where \([.]\) denotes the greatest integer function. ### Step 1: Understanding the Greatest Integer Function The greatest integer function \([x]\) gives the largest integer less than or equal to \(x\). For our case, we need to evaluate \(\left[ \frac{x}{4} \right]\). ### Step 2: Rewrite the Expression We can express \(\left[ \frac{x}{4} \right]\) as: \[ \left[ \frac{x}{4} \right] = \frac{x}{4} - \left\{ \frac{x}{4} \right\} \] where \(\left\{ \frac{x}{4} \right\}\) is the fractional part of \(\frac{x}{4}\). ### Step 3: Substitute into the Limit Substituting this into our limit gives: \[ \lim_{x \to \infty} \frac{3}{x} \left( \frac{x}{4} - \left\{ \frac{x}{4} \right\} \right) \] ### Step 4: Distribute the Terms Distributing the \(\frac{3}{x}\) into the expression: \[ \lim_{x \to \infty} \left( \frac{3}{x} \cdot \frac{x}{4} - \frac{3}{x} \left\{ \frac{x}{4} \right\} \right) \] This simplifies to: \[ \lim_{x \to \infty} \left( \frac{3}{4} - \frac{3}{x} \left\{ \frac{x}{4} \right\} \right) \] ### Step 5: Analyze the Fractional Part As \(x \to \infty\), the fractional part \(\left\{ \frac{x}{4} \right\}\) will always be between \(0\) and \(1\). Thus, \(\frac{3}{x} \left\{ \frac{x}{4} \right\}\) approaches \(0\) because \(\frac{3}{x}\) approaches \(0\). ### Step 6: Evaluate the Limit Now we can evaluate the limit: \[ \lim_{x \to \infty} \left( \frac{3}{4} - 0 \right) = \frac{3}{4} \] ### Step 7: Express as a Fraction We have: \[ \frac{3}{4} = \frac{p}{q} \] where \(p = 3\) and \(q = 4\). ### Step 8: Find \(p + q\) Since \(p\) and \(q\) are relatively prime, we calculate: \[ p + q = 3 + 4 = 7 \] Thus, the final answer is: \[ \boxed{7} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) (logx)/([x]) , where [.] denotes the greatest integer function, is

lim_(xrarr0) x^8[(1)/(x^3)] , where [.] ,denotes the greatest integer function is

lim_(xrarr(-1)/(3)) (1)/(x)[(-1)/(x)]= (where [.] denotes the greatest integer function)

The function, f(x)=[|x|]-|[x]| where [] denotes greatest integer function:

lim_(x-(pi)/(2)) [([sinx]-[cosx]+1)/(3)]= (where [.] denotes the greatest integer integer function)

lim_(x->oo)(3/x)[x/4]= p/q find p+q

Solve (i) lim_(xtooo)tan^(-1)x (ii) lim_(xto-oo)tan^(-1)x (where [.] denotes greatest integer function)

"If p then q" (where p and q are statements) says

int_- 10^0 (|(2[x])/(3x-[x]|)/(2[x])/(3x-[x]))dx is equal to (where [*] denotes greatest integer function.) is equal to (where [*] denotes greatest integer function.)

Sketch the curves (iii) y=|[x]+sqrt(x-[x])| (where [.] denotes the greatest integer function). (where [.] denotes the greatest integer function).