Home
Class 12
MATHS
For a certain value of 'c' lim (x to oo)...

For a certain value of 'c' `lim _(x to oo) [(x ^(5) +7x^(4)+2 )^(c ) -x]` is finite and non-zero. Then the value of limit is :

A

`7/5`

B

`1`

C

`2/5`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the value of \( c \) such that \[ \lim_{x \to \infty} \left( (x^5 + 7x^4 + 2)^c - x \right) \] is finite and non-zero. ### Step 1: Analyze the expression inside the limit As \( x \to \infty \), the term \( x^5 \) dominates the expression \( x^5 + 7x^4 + 2 \). Thus, we can approximate: \[ x^5 + 7x^4 + 2 \approx x^5 \quad \text{(for large } x\text{)} \] ### Step 2: Rewrite the limit Now we can rewrite the limit as: \[ \lim_{x \to \infty} \left( (x^5(1 + \frac{7}{x} + \frac{2}{x^5}))^c - x \right) \] ### Step 3: Simplify the expression Using the property of exponents, we get: \[ = \lim_{x \to \infty} \left( x^{5c} \left( 1 + \frac{7}{x} + \frac{2}{x^5} \right)^c - x \right) \] ### Step 4: Expand the binomial expression As \( x \to \infty \), \( \frac{7}{x} \) and \( \frac{2}{x^5} \) approach 0. We can use the binomial expansion: \[ \left( 1 + \frac{7}{x} + \frac{2}{x^5} \right)^c \approx 1 + c\left(\frac{7}{x}\right) \quad \text{(for large } x\text{)} \] Thus, we have: \[ \lim_{x \to \infty} \left( x^{5c} \left( 1 + c\frac{7}{x} \right) - x \right) \] ### Step 5: Substitute and simplify Substituting this back into the limit gives: \[ = \lim_{x \to \infty} \left( x^{5c} + c \cdot 7x^{5c - 1} - x \right) \] ### Step 6: Set conditions for the limit to be finite and non-zero For the limit to be finite and non-zero, the highest power of \( x \) must cancel out. This means we need: \[ 5c = 1 \quad \Rightarrow \quad c = \frac{1}{5} \] ### Step 7: Substitute \( c \) back into the limit Now, substituting \( c = \frac{1}{5} \): \[ = \lim_{x \to \infty} \left( x + \frac{7}{5} \cdot x^{1 - 1} - x \right) \] This simplifies to: \[ = \lim_{x \to \infty} \left( \frac{7}{5} \right) = \frac{7}{5} \] Thus, the value of the limit is: \[ \boxed{\frac{7}{5}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

For a certain value of 'c' lim _(x to oo) [(x ^(5) +7x^(4)+2 )^(c ) -x] is finite and non-zero. Then the vlaue oimit is :

Find the value of lim_(x->oo)(2-1/x+4/x^2)

If lim_(x to a) (x^(7) + a^(7))/(x + a) = 7 , find the value of a.

Write the value of (lim)_(x->oo)(sin x\ )/x

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

find the value of lim_(x to oo) 48x (pi/4 - tan^(-1) ((x+1)/(x+2)))

If lim_(xto3)(x^(3)+cx^(2)+5x+12)/(x^(2)-7x+12)=l (finite real number), ten

The value of lim_(x to oo)((1+3x)/(2+3x))^((1-sqrt(x))/(1-x)) is

Let g (x ) = x ^(C )e ^(Cx) and f (x) = int _(0)^(x) te ^(2t) (1+3t ^(2))^(1//2) dt. If L = lim _(x to oo) (f'(x ))/(g '(x)) is non-zero finite number then : The value of L . Is :

The value of lim_(xrarroo) (5^(x+1)-7^(x+1))/(5^x-7^x) ,is