Home
Class 12
MATHS
If lim (xto oo) (sqrt( x ^(2) -x+1)-ax ...

If `lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0,` then for `k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =`

A

a

B

`-a`

C

2a

D

b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem step by step, we start with the given limit: \[ \lim_{x \to \infty} \left( \sqrt{x^2 - x + 1} - ax - b \right) = 0 \] ### Step 1: Simplifying the Expression We can rewrite the expression inside the limit: \[ \sqrt{x^2 - x + 1} = \sqrt{x^2(1 - \frac{1}{x} + \frac{1}{x^2})} = x\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} \] Now, substituting this back into the limit gives: \[ \lim_{x \to \infty} \left( x\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - ax - b \right) \] ### Step 2: Factor Out \(x\) We can factor \(x\) out of the limit: \[ \lim_{x \to \infty} \left( x\left(\sqrt{1 - \frac{1}{x} + \frac{1}{x^2}} - a\right) - b \right) \] ### Step 3: Finding the Limit For the limit to equal 0 as \(x \to \infty\), the term inside the parentheses must approach 0. Thus, we need: \[ \sqrt{1 - 0 + 0} - a = 0 \implies 1 - a = 0 \implies a = 1 \] ### Step 4: Finding \(b\) Now substituting \(a = 1\) back into the limit gives: \[ \lim_{x \to \infty} \left( x(1 - 1) - b \right) = -b \] For this limit to equal 0, we must have \(b = 0\). ### Step 5: Conclusion for \(a\) and \(b\) Thus, we have determined: \[ a = 1 \quad \text{and} \quad b = 0 \] ### Step 6: Evaluating the Second Limit Now we need to evaluate: \[ \lim_{x \to \infty} \sec^{2n}(k! \pi b) \] Substituting \(b = 0\): \[ \lim_{x \to \infty} \sec^{2n}(k! \pi \cdot 0) = \sec^{2n}(0) = 1^{2n} = 1 \] ### Final Answer Thus, the final answer is: \[ \lim_{x \to \infty} \sec^{2n}(k! \pi b) = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xto oo)(x/(1+x))^(x) is

If lim_(xto oo){(x^2+1)/(x+1)-ax-b}=2 , then

If lim_(x->oo) (sqrt(x^2-x+1)-ax-b)=0 then the value of a and b are given by:

If lim _( n to oo) (r +2)/(2 ^(r+1) r (r+1))=1/k, then k =

If lim_(xto oo){(x^2+1)/(x+1)-(ax+b)}to oo , then

lim_(xto oo)(ln(x^(2)+5x)-2ln(cx+1)=-2 then

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))

Evaluate lim_(xto oo)sqrt((x-sinx)/(x+cos^(2)x))