Home
Class 12
MATHS
If f is a positive function such that f(...

If `f` is a positive function such that `f(x+T)=f(x)(T>0), AA x in R,` then `lim_(n->oo)n((f(x+T)+2f(x+2T)+.......+nf(x+n T))/(f(x+T)+4f(x+4T)+.......+n^2f(x+n^2T)})=`

A

2

B

`2/3`

C

`3/2`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we start with the given function \( f \) which is periodic with period \( T \), meaning \( f(x + T) = f(x) \) for all \( x \in \mathbb{R} \). We want to evaluate the limit: \[ \lim_{n \to \infty} n \left( \frac{f(x+T) + 2f(x+2T) + \ldots + nf(x+nT)}{f(x+T) + 4f(x+4T) + \ldots + n^2f(x+n^2T)} \right) \] ### Step 1: Rewrite the sums using the periodic property of \( f \) Since \( f(x + kT) = f(x) \) for any integer \( k \), we can simplify both the numerator and the denominator: - The numerator becomes: \[ f(x+T) + 2f(x+2T) + \ldots + nf(x+nT) = f(x) (1 + 2 + \ldots + n) = f(x) \cdot \frac{n(n+1)}{2} \] - The denominator becomes: \[ f(x+T) + 4f(x+4T) + \ldots + n^2f(x+n^2T) = f(x) (1 + 4 + 9 + \ldots + n^2) = f(x) \cdot \frac{n(n+1)(2n+1)}{6} \] ### Step 2: Substitute the sums into the limit expression Now we substitute these results back into the limit expression: \[ \lim_{n \to \infty} n \left( \frac{f(x) \cdot \frac{n(n+1)}{2}}{f(x) \cdot \frac{n(n+1)(2n+1)}{6}} \right) \] ### Step 3: Simplify the limit expression We can cancel \( f(x) \) (since \( f(x) > 0 \)) and simplify: \[ = \lim_{n \to \infty} n \cdot \frac{6 \cdot n(n+1)}{2 \cdot n(n+1)(2n+1)} \] This simplifies to: \[ = \lim_{n \to \infty} \frac{6n}{2(2n+1)} = \lim_{n \to \infty} \frac{3n}{2n + 1} \] ### Step 4: Evaluate the limit Now, we can evaluate the limit: \[ = \lim_{n \to \infty} \frac{3n}{2n + 1} = \lim_{n \to \infty} \frac{3}{2 + \frac{1}{n}} = \frac{3}{2} \] ### Final Answer Thus, the final answer is: \[ \frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) is a function such that f(x-1)+f(x+1)=sqrt3t(x) and f(5)=100 , then find sum_(t=0)^(19)f(5+12r) .

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . y=f(x) is

If f : R to R is different function and f(2) = 6, then lim_(x to 2) int_(6)^f(x) (2t dt)/(x - 2) is

Let f:R to R be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:R in R be a continuous function such that f(1)=2. If lim_(x to 1) int_(2)^(f(x)) (2t)/(x-1)dt=4 , then the value of f'(1) is

Let f be continuous function on [0,oo) such that lim _(x to oo) (f(x)+ int _(o)^(x) f (t ) (dt)) exists. Find lim _(x to oo) f (x).

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

Let f(x) be a differentiable function such that int_(t)^(t^(2))xf(x)dx=(4)/(3)t^(3)-(4t)/(3)AA t ge0 , then f(1) is equal to

If f:RrarrR,f(x) is a differentiable function such that (f(x))^(2)=e^(2)+int_(0)^(x)(f(t)^(2)+(f'(t))^(2))dtAAx inR . The values f(1) can take is/are