Home
Class 12
MATHS
Let f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7 ,...

Let `f(x)=3x^10-7x^8+5x^6-21x^3+3x^2-7` , then the value of `lim_(h->0) (f(1-h)-f(1))/(h^3+3h)`

A

`50/3`

B

`22/3`

C

`3`

D

`53/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we will follow these steps: ### Step 1: Write down the limit expression We need to evaluate the limit: \[ L = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h^3 + 3h} \] ### Step 2: Factor the denominator Notice that we can factor \(h\) from the denominator: \[ h^3 + 3h = h(h^2 + 3) \] Thus, we can rewrite the limit as: \[ L = \lim_{h \to 0} \frac{f(1-h) - f(1)}{h(h^2 + 3)} \] ### Step 3: Recognize the derivative The expression \(\frac{f(1-h) - f(1)}{-h}\) resembles the definition of the derivative. We can rewrite the limit as: \[ L = -\lim_{h \to 0} \frac{f(1-h) - f(1)}{-h(h^2 + 3)} = -\frac{1}{3} \lim_{h \to 0} \frac{f(1-h) - f(1)}{-h} \] This implies: \[ L = -\frac{1}{3} f'(1) \] ### Step 4: Calculate \(f'(x)\) Now we need to find \(f'(x)\). Given: \[ f(x) = 3x^{10} - 7x^8 + 5x^6 - 21x^3 + 3x^2 - 7 \] We differentiate \(f(x)\): \[ f'(x) = 30x^9 - 56x^7 + 30x^5 - 63x^2 + 6x \] ### Step 5: Evaluate \(f'(1)\) Now we substitute \(x = 1\) into \(f'(x)\): \[ f'(1) = 30(1)^9 - 56(1)^7 + 30(1)^5 - 63(1)^2 + 6(1) \] Calculating this gives: \[ f'(1) = 30 - 56 + 30 - 63 + 6 = -53 \] ### Step 6: Substitute \(f'(1)\) back into the limit Now we substitute \(f'(1)\) back into our expression for \(L\): \[ L = -\frac{1}{3}(-53) = \frac{53}{3} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{53}{3}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(h to 0) (f(x+h)+f(x-h))/h is equal to

If (x^2+x−2)/(x+3) -1) f(x) then find the value of lim_(x->-1) f(x)

If f'(3)=2 , then lim_(h->0)(f(3+h^2)-f(3-h^2))/(2h^2) is

Let f (x) =3x ^(10) -7x ^(8) +5x^(6) -21 x ^(3) +3x ^(2) -7 265 (lim _(htoo) (h ^(4) +3h^(2))/((f(1-h) -f (1))sin5h))=

If the equation of the normal to the curve y=f(x) at x=0 is 3x-y+3=0 then the value of lim_(xrarr0) (x^(2))/({f(x^(2))-5f(4x^(2))+4f(7x^(2))}) is

If f(x) is derivable at x=3 and f'(3)=2 , then value of lim_(hto0)(f(3+h^(2))-f(3-h^(2)))/(2h^(2)) is less than

If f (x) =2x ^(2) -5x +7, what is the value of f (8) -f (3) ?

If f(x) is derivable at x=5, f'(5)=4 , then evaluate lim_(hto0)(f(5+h^(3))-f(5-h^(3)))/(2h^(3)

If f,\ g,\ h are real functions defined by f=sqrt(x+1),\ g(x)=1/x\ a n d\ h(x)=2x^2-3, then find the values of (2fg+g-h)(1)\ a n d\ (2f+g-h)(1)dot

If f(x)=x^9-6x^8-2x^7+12 x^6+x^4-7x^3+6x^2+x-3, find f(6)dot