Home
Class 12
MATHS
lim (xto0) ((cos x -secx )/(x ^(2) (x+1)...

`lim _(xto0) ((cos x -secx )/(x ^(2) (x+1)))=`

A

0

B

`-1/2`

C

`-1`

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\cos x - \sec x}{x^2 (x + 1)}, \] we first need to analyze the expression. When we substitute \(x = 0\) directly, we get: \[ \cos(0) - \sec(0) = 1 - 1 = 0, \] and the denominator becomes: \[ 0^2(0 + 1) = 0. \] This results in the indeterminate form \(\frac{0}{0}\). To resolve this, we can apply L'Hôpital's Rule, which states that if we have an indeterminate form \(\frac{0}{0}\) or \(\frac{\infty}{\infty}\), we can take the derivative of the numerator and the derivative of the denominator. ### Step 1: Differentiate the numerator and denominator The numerator is \( \cos x - \sec x \). The derivative of this is: \[ \frac{d}{dx}(\cos x - \sec x) = -\sin x - \sec x \tan x. \] The denominator is \( x^2 (x + 1) \). We can use the product rule to differentiate this: \[ \frac{d}{dx}(x^2 (x + 1)) = (2x)(x + 1) + (x^2)(1) = 2x^2 + 2x + x^2 = 3x^2 + 2x. \] ### Step 2: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{\cos x - \sec x}{x^2 (x + 1)} = \lim_{x \to 0} \frac{-\sin x - \sec x \tan x}{3x^2 + 2x}. \] ### Step 3: Substitute \(x = 0\) again Substituting \(x = 0\) in the new limit gives: Numerator: \[ -\sin(0) - \sec(0) \tan(0) = 0 - 1 \cdot 0 = 0. \] Denominator: \[ 3(0)^2 + 2(0) = 0. \] This is again an indeterminate form \(\frac{0}{0}\). We apply L'Hôpital's Rule again. ### Step 4: Differentiate again The new numerator is \(-\sin x - \sec x \tan x\). The derivative is: \[ -\cos x - (\sec x \tan^2 x + \sec^3 x). \] The new denominator is \(3x^2 + 2x\), and its derivative is: \[ 6x + 2. \] ### Step 5: Apply L'Hôpital's Rule again Now we have: \[ \lim_{x \to 0} \frac{-\cos x - (\sec x \tan^2 x + \sec^3 x)}{6x + 2}. \] ### Step 6: Substitute \(x = 0\) again Substituting \(x = 0\): Numerator: \[ -\cos(0) - (\sec(0) \cdot 0^2 + \sec^3(0)) = -1 - 1 = -2. \] Denominator: \[ 6(0) + 2 = 2. \] ### Final Result Thus, we have: \[ \lim_{x \to 0} \frac{-2}{2} = -1. \] So the final answer is: \[ \lim_{x \to 0} \frac{\cos x - \sec x}{x^2 (x + 1)} = -1. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let a =lim _(xto0) (ln (cos 2x ))/( 3x ^(2)) , b = lim _(xto0) (sin ^(2) 2x )/(x (1-e ^(x))), c = lim _(x to 1) (sqrtx-x )/( ln x). Then a,b,c satisfy :

lim_(xto0) (1- cos 2x)/(x^(2)) = _______

If lim _(xto0) (a cos x)/(x^2) + (b)/(x ^(2))=1/3, then b-a=

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(xto0) (1-(cosx)sqrt(cos2x))/(x^(2)) is

Evaluate lim_(xto0) (1-cos2x)/x^(2)

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

The value of ordered pair (a,b) such that lim _(xto0) (x (1+ a cos x ) -b sin x )/( x ^(3))=1, is:

The value of lim_(xto0)(x cosx-log(1+x))/(x^(2)) is