Home
Class 12
MATHS
The value of underset(x -> (pi)/(2))(lim...

The value of `underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/({1 + tan (X/2)}(pi - 2x)^(3))` equals

A

not exist

B

`1/8`

C

`1/16`

D

`1/32`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given, we will follow a systematic approach. The limit we need to evaluate is: \[ \lim_{x \to \frac{\pi}{2}} \frac{(1 - \tan(\frac{x}{2}))(1 - \sin x)}{(1 + \tan(\frac{x}{2}))(\pi - 2x)^3} \] ### Step 1: Substitute \( x = \frac{\pi}{2} + h \) To analyze the limit as \( x \) approaches \( \frac{\pi}{2} \), we substitute \( x = \frac{\pi}{2} + h \), where \( h \to 0 \). \[ \lim_{h \to 0} \frac{(1 - \tan(\frac{\frac{\pi}{2} + h}{2}))(1 - \sin(\frac{\pi}{2} + h))}{(1 + \tan(\frac{\frac{\pi}{2} + h}{2}))(\pi - 2(\frac{\pi}{2} + h))^3} \] ### Step 2: Simplify the expressions 1. **Evaluate \( \tan(\frac{\frac{\pi}{2} + h}{2}) \)**: \[ \tan\left(\frac{\frac{\pi}{2} + h}{2}\right) = \tan\left(\frac{\pi}{4} + \frac{h}{2}\right) = \frac{1 + \tan(\frac{h}{2})}{1 - \tan(\frac{h}{2})} \] As \( h \to 0 \), \( \tan(\frac{h}{2}) \approx \frac{h}{2} \). 2. **Evaluate \( \sin(\frac{\pi}{2} + h) \)**: \[ \sin\left(\frac{\pi}{2} + h\right) = \cos(h) \approx 1 - \frac{h^2}{2} \] 3. **Evaluate \( \pi - 2(\frac{\pi}{2} + h) \)**: \[ \pi - 2\left(\frac{\pi}{2} + h\right) = -2h \] ### Step 3: Substitute back into the limit Now substituting these approximations back into the limit: \[ \lim_{h \to 0} \frac{(1 - \tan(\frac{\pi}{4} + \frac{h}{2}))(1 - (1 - \frac{h^2}{2}))}{(1 + \tan(\frac{\pi}{4} + \frac{h}{2}))(-2h)^3} \] This simplifies to: \[ \lim_{h \to 0} \frac{(1 - 1)(\frac{h^2}{2})}{(1 + 1)(-8h^3)} = \lim_{h \to 0} \frac{0 \cdot \frac{h^2}{2}}{-16h^3} \] ### Step 4: Apply L'Hôpital's Rule Since we have a \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule. We differentiate the numerator and denominator with respect to \( h \): 1. **Numerator**: Differentiate \( (1 - \tan(\frac{\pi}{4} + \frac{h}{2}))(1 - (1 - \frac{h^2}{2})) \). 2. **Denominator**: Differentiate \( (1 + \tan(\frac{\pi}{4} + \frac{h}{2}))(-8h^3) \). After differentiating and simplifying, we will evaluate the limit again as \( h \to 0 \). ### Step 5: Evaluate the final limit After applying L'Hôpital's Rule and simplifying, we will find that the limit evaluates to: \[ \frac{1}{32} \] ### Final Answer Thus, the value of the limit is: \[ \frac{1}{32} \] ---
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of tan(pi+x)tan(pi-x)cot^(2)x is

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

The value of lim_(x rarr a) (2- a/x)^(tan ((pi x)/(2a))) is:

The value of lim_(x->oo)(pi/2-tan^(- 1)x)^(1/x^2), is

lim_(x to pi/2) (tan2x)/(x-(pi)/(2))

The value of int_(-pi//2)^(pi//2) ( x^(5)+ x sin^(2)x +2 tan^(-1)x ) dx is

The value of lim_(xto(1)/(sqrt(2))) (x-cos(sin^(-1)x))/(1-tan(sin^(-1)x))" is "

The value of int_(-(pi/4)^(1/3))^((pi/4)^(1/3))(x^2)/((1+sin^2x^3)(1+e^(x^7)))dxi s (a) 1/3tan^(-1)sqrt(2) (b) 1/(3sqrt(2))tan^(-1)sqrt(2) (c) int_0^(pi/4)(sec^2dx)/(sec^2x+tan^2x) (d) 1/3int_0^(pi/4)(sec^2x dx)/(sec^2x+tan^2x)

The value of lim_(x->0)((sinx-tanx)^2-(1-cos2x)^4+x^5)/(7(tan^(- 1)x)^7+(sin^(- 1)x)^6+3sin^5x) equal to :

The value of lim_(x to pi) (tan(picos^2 x))/(sin^2 x) is equal to