Home
Class 12
MATHS
lim(x -> oo) ((x-3)/(x+2))^x is equal to...

`lim_(x -> oo) ((x-3)/(x+2))^x` is equal to

A

e

B

`e ^(-1)`

C

`e ^(-5)`

D

`e ^(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to \infty} \left( \frac{x-3}{x+2} \right)^x \), we can follow these steps: ### Step 1: Rewrite the expression We start with the limit: \[ \lim_{x \to \infty} \left( \frac{x-3}{x+2} \right)^x \] We can simplify the fraction inside the limit: \[ \frac{x-3}{x+2} = \frac{x(1 - \frac{3}{x})}{x(1 + \frac{2}{x})} = \frac{1 - \frac{3}{x}}{1 + \frac{2}{x}} \] Thus, we can rewrite the limit as: \[ \lim_{x \to \infty} \left( \frac{1 - \frac{3}{x}}{1 + \frac{2}{x}} \right)^x \] ### Step 2: Evaluate the limit of the base As \( x \to \infty \), both \( \frac{3}{x} \) and \( \frac{2}{x} \) approach 0. Therefore: \[ \frac{1 - \frac{3}{x}}{1 + \frac{2}{x}} \to \frac{1 - 0}{1 + 0} = 1 \] ### Step 3: Use the exponential limit Since the base approaches 1, we can use the fact that \( (1 + u)^n \approx e^{nu} \) for small \( u \). We need to express the limit in a suitable form: \[ \lim_{x \to \infty} \left( \frac{1 - \frac{3}{x}}{1 + \frac{2}{x}} \right)^x = \lim_{x \to \infty} \left( 1 - \frac{3}{x} - \frac{2}{x} + O\left(\frac{1}{x^2}\right) \right)^x \] This simplifies to: \[ \lim_{x \to \infty} \left( 1 - \frac{5}{x} + O\left(\frac{1}{x^2}\right) \right)^x \] ### Step 4: Apply the limit Using the exponential limit: \[ \lim_{x \to \infty} \left( 1 - \frac{5}{x} \right)^x = e^{-5} \] ### Final Result Thus, the limit is: \[ \lim_{x \to \infty} \left( \frac{x-3}{x+2} \right)^x = e^{-5} \] ### Summary The final answer is: \[ \boxed{e^{-5}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr oo) ((x+5)/(x-1))^(x) is equal to

lim_(x->oo) (x-sqrt(x^2+x))

lim_(x->oo) ((x^2-2x+1)/(x^2-4x+2))^x is equal to

lim_(xrarroo) ((x+2)/(x+1))^(x+3) is equal to

lim_(xrarr oo)((x^2+4x-3)/(x^2-2x+5))^x is equal to

lim_(x->oo) xsin(2/x)

lim_(x -> oo)(x(log(x)^3)/(1+x+x^2)) equals 0 (b) -1 (c) 1 (d) none of these

lim_(x to 2) (x^(2) - 4)/(x + 3) is equal to

If lim_(xtoa)f(x)=1 and lim_(xtoa)g(x)=oo then lim_(xtoa){f(x)}^(g(x))=e^(lim_(xtoa)(f(x)-1)g(x)) lim_(xto0)((x-1+cosx)/x)^(1/x) is equal to

lim_(x->oo) (sinx/x) =