Home
Class 12
MATHS
lim(x->0)(1+(asinb x)/(cosx))^(1/x), whe...

`lim_(x->0)(1+(asinb x)/(cosx))^(1/x),` where `a,b` are non zero constants is equal to :

A

`e ^(a//b)`

B

`ab`

C

`e ^(ab )`

D

`e ^(b//e)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( 1 + \frac{a \sin(bx)}{\cos(x)} \right)^{\frac{1}{x}} \), we can follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), \( \sin(bx) \) approaches \( bx \) and \( \cos(x) \) approaches \( 1 \). Therefore, the expression inside the limit approaches: \[ 1 + \frac{a \sin(bx)}{\cos(x)} \approx 1 + \frac{a(bx)}{1} = 1 + abx \] This means we are dealing with a limit of the form \( (1 + u)^{v} \) where \( u \to 0 \) and \( v \to \infty \). ### Step 2: Take the natural logarithm To simplify the limit, we take the natural logarithm: \[ L = \lim_{x \to 0} \frac{1}{x} \ln\left( 1 + \frac{a \sin(bx)}{\cos(x)} \right) \] Using the property that \( \ln(1 + u) \approx u \) as \( u \to 0 \), we have: \[ \ln\left( 1 + \frac{a \sin(bx)}{\cos(x)} \right) \approx \frac{a \sin(bx)}{\cos(x)} \] ### Step 3: Substitute and simplify Now substituting back into our limit: \[ L = \lim_{x \to 0} \frac{1}{x} \cdot \frac{a \sin(bx)}{\cos(x)} \] As \( x \to 0 \), \( \cos(x) \to 1 \), so we can simplify: \[ L = \lim_{x \to 0} \frac{a \sin(bx)}{x} \] ### Step 4: Use the limit property of sine Using the limit property \( \lim_{x \to 0} \frac{\sin(kx)}{x} = k \): \[ L = \lim_{x \to 0} a \cdot b = ab \] ### Step 5: Exponentiate to find the limit Now, recalling that we took the logarithm earlier: \[ \lim_{x \to 0} \left( 1 + \frac{a \sin(bx)}{\cos(x)} \right)^{\frac{1}{x}} = e^L = e^{ab} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \left( 1 + \frac{a \sin(bx)}{\cos(x)} \right)^{\frac{1}{x}} = e^{ab} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x rarr0)(sin^2x)/(1-cosx)

(lim)_(x->0)(cos2x-1)/(cosx-1)

lim_(xrarr0)(cos 2x-1)/(cosx-1)

lim_( xrarr0) (1-cosx)/(x^(2))

if lim_(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, then

Evaluate lim_(x to 0) (sinx-2)/(cosx-1).

If lim_(x→0) ​ (x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then,

lim_(x -0) (1 - cos 4x)/(x^(2)) is equal to

lim_(xto0) (x^(a)sin^(b)x)/(sin(x^(c))) , where a,b,c inR~{0}, exists and has non-zero value. Then,

("lim")_(xvec0)(x^asin^b x)/(sin(x^c)) , where a , b , c in R ~{0},exists and has non-zero value. Then, a+c = (a) b (b) -1 0 (d) none of these