Home
Class 12
MATHS
the value of lim(x->0){(cosx)^(1/(sin^2x...

the value of `lim_(x->0){(cosx)^(1/(sin^2x))+(sin2x+2tan^-13x+3x^2)/(ln(1+3x+sin^2x)+xe^x)}`

A

`sqrte+3/2`

B

`(1)/(sqrte)+ 3/2`

C

`sqrte +2`

D

`(1)/(sqrte) +2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \left( \cos x^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1}(3x) + 3x^2}{\ln(1 + 3x + \sin^2 x) + xe^x} \right) \), we will break it down into two parts: \( L_1 \) and \( L_2 \). ### Step 1: Evaluating \( L_1 = \lim_{x \to 0} \cos x^{\frac{1}{\sin^2 x}} \) 1. **Substituting \( x = 0 \)**: \[ \cos(0)^{\frac{1}{\sin^2(0)}} = 1^{\infty} \] This is an indeterminate form, so we will take the logarithm. 2. **Taking the logarithm**: \[ \ln L_1 = \lim_{x \to 0} \frac{\ln(\cos x)}{\sin^2 x} \] 3. **Applying L'Hôpital's Rule**: Since both the numerator and denominator approach 0 as \( x \to 0 \), we can apply L'Hôpital's Rule: \[ \ln L_1 = \lim_{x \to 0} \frac{-\sin x}{\sin^2 x \cdot \cos x} = \lim_{x \to 0} \frac{-1}{2\cos x} = -\frac{1}{2} \] 4. **Exponentiating to find \( L_1 \)**: \[ L_1 = e^{-\frac{1}{2}} = \frac{1}{\sqrt{e}} \] ### Step 2: Evaluating \( L_2 = \lim_{x \to 0} \frac{\sin 2x + 2\tan^{-1}(3x) + 3x^2}{\ln(1 + 3x + \sin^2 x) + xe^x} \) 1. **Substituting \( x = 0 \)**: \[ \sin(0) + 2\tan^{-1}(0) + 3(0)^2 = 0 \] and \[ \ln(1 + 0 + 0) + 0 = 0 \] This is also an indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Differentiate the numerator and denominator: - Numerator: \( 2\cos(2x) + \frac{6}{1 + (3x)^2} + 6x \) - Denominator: \( \frac{3}{1 + 3x + \sin^2 x} + e^x + xe^x \) 3. **Evaluating the limit**: Substitute \( x = 0 \): \[ \text{Numerator: } 2 + 6 + 0 = 8 \] \[ \text{Denominator: } 3 + 1 + 0 = 4 \] Thus, \[ L_2 = \frac{8}{4} = 2 \] ### Final Step: Combining \( L_1 \) and \( L_2 \) Now, we combine both limits: \[ \lim_{x \to 0} \left( L_1 + L_2 \right) = \frac{1}{\sqrt{e}} + 2 \] ### Conclusion The final value of the limit is: \[ \lim_{x \to 0} \left( \cos x^{\frac{1}{\sin^2 x}} + \frac{\sin 2x + 2\tan^{-1}(3x) + 3x^2}{\ln(1 + 3x + \sin^2 x) + xe^x} \right) = 2 + \frac{1}{\sqrt{e}} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

lim_(x->0)(tan8x)/(sin2x)

lim_(x->0)((1-cos2x)sin5x)/(x^2sin3x)

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

Evaluate lim_(x-> 0) (tan3x-2x)/(3x- sin^2 x)

lim_(x->0) (2+2x+sin2x)/((2x+sin2x)e^sinx) is

The value of Lim_(x->0^+)(int_1^cosx(cos^-1t)dt)/(2x-sin(2x)) is equal to

The value of lim_(xrarr0)((4^x-1)^3)/(sin.(x^2)/(4)log(1+3x)) ,is

The value of lim_(xrarr0)(ln(2-cos15x))/(ln^(2)(sin3x+1)) is equal to

The value of lim_(xrarr0^(+))((1-cos(sin^(2)x))/(x^(2)))^((log_(e)(1-2x^(2)))/(sin^(2)x)) is

lim_(x rarr0)(sin^2x)/(1-cosx)