Home
Class 12
MATHS
The integral value of n so that lim(x->0...

The integral value of `n` so that `lim_(x->0) f(x)` where `f(x) ={(sinx-x)(2sinx-ln((1+x)/(1-x)))}/x^n` is a finite non-zero number

A

2

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} f(x) = \frac{( \sin x - x )( 2 \sin x - \ln \left( \frac{1+x}{1-x} \right))}{x^n} \] we need to find the integral value of \( n \) such that this limit is a finite non-zero number. ### Step 1: Expand \( \sin x \) using Taylor series The Taylor series expansion of \( \sin x \) around \( x = 0 \) is: \[ \sin x = x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots \] ### Step 2: Substitute the expansion into \( \sin x - x \) Using the expansion, we have: \[ \sin x - x = \left( x - \frac{x^3}{6} + \frac{x^5}{120} - \cdots \right) - x = -\frac{x^3}{6} + \frac{x^5}{120} - \cdots \] ### Step 3: Expand \( \ln \left( \frac{1+x}{1-x} \right) \) Using the series expansion for \( \ln(1+x) \) and \( \ln(1-x) \): \[ \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \] \[ \ln(1-x) = -\left( x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots \right) \] Thus, \[ \ln \left( \frac{1+x}{1-x} \right) = \ln(1+x) - \ln(1-x) = \left( x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots \right) - \left( -x - \frac{x^2}{2} - \frac{x^3}{3} - \cdots \right) \] This simplifies to: \[ \ln \left( \frac{1+x}{1-x} \right) = 2x + \frac{x^3}{3} + \cdots \] ### Step 4: Substitute back into \( f(x) \) Now substituting back into \( f(x) \): \[ 2 \sin x - \ln \left( \frac{1+x}{1-x} \right) = 2 \left( -\frac{x^3}{6} + \frac{x^5}{120} - \cdots \right) - \left( 2x + \frac{x^3}{3} + \cdots \right) \] This gives: \[ = -\frac{x^3}{3} + O(x^5) \] ### Step 5: Combine the terms Now we have: \[ f(x) = \frac{(-\frac{x^3}{6})(-\frac{x^3}{3})}{x^n} = \frac{\frac{x^6}{18}}{x^n} = \frac{x^{6-n}}{18} \] ### Step 6: Evaluate the limit We need to evaluate: \[ \lim_{x \to 0} \frac{x^{6-n}}{18} \] For this limit to be finite and non-zero, we require \( 6 - n = 0 \), which gives \( n = 6 \). ### Conclusion Thus, the integral value of \( n \) such that the limit is a finite non-zero number is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Find the integral value of n for which lim_(x->0)(cos^2x-cosx-e^xcosx+e^x-(x^3)/2)/(x^n) is a finite nonzero number

Find the value of lim_(x->0)(1/sinx-1/x)

Find the value of lim_(x->0)(1/sinx-1/x)

The value of lim_(xrarr0) (x^2sin((1)/(x)))/(sinx) , is

The integer n for which lim_(x->0)((cosx-1)(cosx-e^x))/(x^n) is finite nonzero number is ________

The integer n for which lim_(x->0)((cosx-1)(cosx-e^x))/(x^n) is finite nonzero number is ________

Calculate lim_(x to 0) f(x) , where f(x) = (1)/(x^(2)) for x gt 0

Let f(x)= lim_(n->oo)(sinx)^(2n)

The value of lim_(xto0) (1+sinx-cosx+log(1-x))/(x^(3)) is

Find lim_(x to 1) f(x) , where f(x) = {{:(x + 1, x != 1),(0, x = 1):}}