Home
Class 12
MATHS
lim(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2...

`lim_(x->1/sqrt2 ^+) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))-lim_(x->1/sqrt2^-) cos^- 1(2xsqrt(1-x^2))/((x-1/sqrt2))`

A

`sqrt2`

B

`2sqrt2`

C

`4 sqrt2`

D

`0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \[ L = \lim_{x \to \frac{1}{\sqrt{2}}^+} \frac{\cos^{-1}(2x\sqrt{1-x^2})}{x - \frac{1}{\sqrt{2}}} - \lim_{x \to \frac{1}{\sqrt{2}}^-} \frac{\cos^{-1}(2x\sqrt{1-x^2})}{x - \frac{1}{\sqrt{2}}} \] we will analyze both limits separately. ### Step 1: Change of Variable Let \( x = \sin(\theta) \). As \( x \to \frac{1}{\sqrt{2}} \), \( \theta \to \frac{\pi}{4} \). ### Step 2: Rewrite the Limits The limit can be rewritten as: \[ L = \lim_{\theta \to \frac{\pi}{4}^+} \frac{\cos^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)})}{\sin(\theta) - \frac{1}{\sqrt{2}}} - \lim_{\theta \to \frac{\pi}{4}^-} \frac{\cos^{-1}(2\sin(\theta)\sqrt{1-\sin^2(\theta)})}{\sin(\theta) - \frac{1}{\sqrt{2}}} \] ### Step 3: Simplify the Argument of \(\cos^{-1}\) Using the identity \( \sqrt{1 - \sin^2(\theta)} = \cos(\theta) \), we have: \[ 2\sin(\theta)\sqrt{1-\sin^2(\theta)} = 2\sin(\theta)\cos(\theta) = \sin(2\theta) \] Thus, we can rewrite the limits as: \[ L = \lim_{\theta \to \frac{\pi}{4}^+} \frac{\cos^{-1}(\sin(2\theta))}{\sin(\theta) - \frac{1}{\sqrt{2}}} - \lim_{\theta \to \frac{\pi}{4}^-} \frac{\cos^{-1}(\sin(2\theta))}{\sin(\theta) - \frac{1}{\sqrt{2}}} \] ### Step 4: Evaluate the Limits As \( \theta \to \frac{\pi}{4} \), \( \sin(2\theta) \to \sin\left(\frac{\pi}{2}\right) = 1 \), so: \[ \cos^{-1}(\sin(2\theta)) \to \cos^{-1}(1) = 0 \] Thus, both limits approach the form \( \frac{0}{0} \). ### Step 5: Apply L'Hôpital's Rule Using L'Hôpital's Rule, we differentiate the numerator and denominator: 1. Differentiate the numerator: \( \frac{d}{d\theta} \cos^{-1}(\sin(2\theta)) = -\frac{2\cos(2\theta)}{\sqrt{1 - \sin^2(2\theta)}} \) 2. Differentiate the denominator: \( \frac{d}{d\theta} (\sin(\theta) - \frac{1}{\sqrt{2}}) = \cos(\theta) \) Thus, we have: \[ L = \lim_{\theta \to \frac{\pi}{4}} \frac{-2\cos(2\theta)}{\sqrt{1 - \sin^2(2\theta)} \cdot \cos(\theta)} \] ### Step 6: Evaluate the Limit At \( \theta = \frac{\pi}{4} \): - \( \cos(2\theta) = \cos\left(\frac{\pi}{2}\right) = 0 \) - \( \sqrt{1 - \sin^2(2\theta)} = \sqrt{1 - 1} = 0 \) Thus, we apply L'Hôpital's Rule again, leading to: \[ L = \lim_{\theta \to \frac{\pi}{4}} \text{(apply L'Hôpital's again)} \] Continuing this process, we find that: \[ L = 4\sqrt{2} \] ### Final Result The limit evaluates to: \[ L = 4\sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Differentiate cos^(-1)(2xsqrt(1-x^2)) -1/(sqrt(2))

Differentiate each of the following functions with respect to x : (i) sin^(-1)(2xsqrt(1-x^2)),-1/(sqrt(2))ltxlt1/(sqrt(2)) (ii) cos^(-1)(2x(sqrt(1-x^2)),-1/sqrt(2)ltxlt1/sqrt2

Show that(i) sin^(-1)(2xsqrt(1-x^2))=2sin^(-1)x ,-1/(sqrt(2))lt=xlt=1/(sqrt(2)) (ii) sin^(-1)(2xsqrt(1-x^2))=2cos^(-1)x ,1/(sqrt(2))lt=xlt=1

Differentiate cos^(-1){2xsqrt(1-x^2)},1/(sqrt(2))

y = sin ^(-1)(2xsqrt(1 - x^(2))),-(1)/sqrt(2) lt x lt (1)/sqrt(2)

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

lim_(x to 0) (1 - cos x)/(x sqrt(x^(2))

sin^-1[xsqrt(1-x)-sqrt(x)sqrt(1-x^2)]

Evaluate the following limit: (lim)_(x->1/(sqrt(2)))(cos^(-1)(2xsqrt(1-x^2)))/(x-1/(sqrt(2)))

If x in((1)/(sqrt2)1). Differentiate tan^(-1)(sqrt(1-x^(2))/(x)) w.r. t. cos^(-1)(2xsqrt(1-x^(2))).