Home
Class 12
MATHS
lim(n->oo)sum(k=1)^n((sin)pi/(2k)-(cos)p...

`lim_(n->oo)sum_(k=1)^n((sin)pi/(2k)-(cos)pi/(2k)-(sin)(pi/(2(k+2))+(cos)pi/(2(k+2)))=`

A

0

B

1

C

2

D

3

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Let F(x)=(1+sin(pi/(2k))(1+sin(k-1)pi/(2k))(1+sin(2k+1)pi/(2k))(1+sin(3k-1)pi/(2k)) . The value of F(1)+F(2)+F(3) is equal to

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

The value of sum_(k=1)^(13) (1)/(sin((pi)/(4) + ((k-1)pi)/(6)) sin ((pi)/(4)+ (kpi)/(6))) is equal to

Evaluate lim_(nrarroo)(2)/(n)(sin.(pi)/(2n)+sin.(2pi)/(2n)+sin.(3pi)/(2n)+....+sin.(npi)/(2n))

sin(pi/2^2009)cos(pi/2^2009)cos(pi/2^2008).....cos(pi/2^2) is

The value of sum_(k=1)^(3) cos^(2)(2k-1)(pi)/(12), is

The value of lim_(n->oo)sum_(k=1)^n(6^k)/((3^k-2^k)(3^(k+1)-2^(k+1)) is equal to

Evaluate ("lim")_(n rarr oo)sum_(k=1)^nk/(n^2+k^2)

Find the value lim_(n rarr oo) sum_(k=2)^(n) cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

If lim_(n to oo) sum_(k=2)^(n)cos^(-1)((1+sqrt((k-1)(k+2)(k+1)k))/(k(k+1)))=(120pi)/(lambda) , find the value of lambda .