Home
Class 12
MATHS
What is the value of a+b, if lim (xto 0)...

What is the value of `a+b, if lim _(xto 0) (sin (ax) -ln (e ^(x)cos x))/(x sin (bx))=1/2` ?

A

1

B

2

C

3

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given by \[ \lim_{x \to 0} \frac{\sin(ax) - \ln(e^x \cos x)}{x \sin(bx)} = \frac{1}{2}, \] we will follow these steps: ### Step 1: Analyze the limit As \( x \to 0 \), both the numerator and denominator approach 0, leading to a \( \frac{0}{0} \) indeterminate form. Thus, we can apply L'Hôpital's Rule. ### Step 2: Differentiate the numerator and denominator We differentiate the numerator and denominator separately. **Numerator:** \[ \frac{d}{dx}[\sin(ax) - \ln(e^x \cos x)] = a \cos(ax) - \frac{1}{e^x \cos x} \left(e^x \cos x - e^x (-\sin x)\right) \] This simplifies to: \[ a \cos(ax) - \frac{e^x \cos x + e^x \sin x}{e^x \cos x} = a \cos(ax) - \left(1 + \tan x\right) \] **Denominator:** \[ \frac{d}{dx}[x \sin(bx)] = \sin(bx) + bx \cos(bx) \] ### Step 3: Apply L'Hôpital's Rule Now we can rewrite the limit: \[ \lim_{x \to 0} \frac{a \cos(ax) - (1 + \tan x)}{\sin(bx) + bx \cos(bx)} \] ### Step 4: Evaluate the limit as \( x \to 0 \) Substituting \( x = 0 \): - The numerator becomes \( a \cdot 1 - (1 + 0) = a - 1 \). - The denominator becomes \( 0 + 0 = 0 \). Since we still have a \( \frac{0}{0} \) form, we apply L'Hôpital's Rule again. ### Step 5: Differentiate again **Numerator:** \[ \frac{d}{dx}[a \cos(ax) - (1 + \tan x)] = -a^2 \sin(ax) - \sec^2 x \] **Denominator:** \[ \frac{d}{dx}[\sin(bx) + bx \cos(bx)] = b \cos(bx) + \cos(bx) - b x \sin(bx) = (b + 1) \cos(bx) - b x \sin(bx) \] ### Step 6: Evaluate the limit again Now we evaluate: \[ \lim_{x \to 0} \frac{-a^2 \sin(ax) - \sec^2 x}{(b + 1) \cos(bx) - b x \sin(bx)} \] Substituting \( x = 0 \): - The numerator becomes \( 0 - 1 = -1 \). - The denominator becomes \( (b + 1) \cdot 1 - 0 = b + 1 \). Thus, we have: \[ \frac{-1}{b + 1} = \frac{1}{2}. \] ### Step 7: Solve for \( b \) Setting the equation: \[ -1 = \frac{1}{2}(b + 1) \implies -2 = b + 1 \implies b = -3. \] ### Step 8: Find \( a \) From the earlier limit evaluations, we found that \( a - 1 = 0 \implies a = 1 \). ### Step 9: Calculate \( a + b \) Finally, we calculate: \[ a + b = 1 - 3 = -2. \] ### Final Answer Thus, the value of \( a + b \) is: \[ \boxed{-2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

Find the value of a so that lim_(xto0) (e^(ax)-e^(x)-x)=3/2.

The vlaue of lim _(xto0) ((sin x)/(x )) ^((1)/(1- cos x )) :

Find the value of lim_(xto0) (sinx+log_(e)(sqrt(1+sin^(2)x)-sinx))/(sin^(3)x).

The value of lim _(xto0) (cos (sin x )- cos x)/(x ^(4)) is equal to :

The value of lim_(x to 0) (log(sin 5x + cos 5x))/(tan 3x) is equal to

Evaluate : lim_(xto 0) (10^(x) - 2^(x) -5^(x)+1)/(sin^(2)x)

Evaluate lim_(xto0)(int_(0)^(x^(2))cos^(2)tdt)/(x sin x)

The value of lim_(xto0)(x sin (sinxx)-sin^(2)x)/(x^(6)) equals

The value of lim_(xto0)(cos ax)^(cosec^(2)bx) is

lim_(xto0)(|sin x|)/x is equal to :