Home
Class 12
MATHS
The value of lim (xto oo) ((n !)/(n ^(n)...

The value of `lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN` is equal to:

A

`((1)/(e ))^(3//4)`

B

`e ^(3//4)`

C

`e ^(-1)`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{n \to \infty} \left( \frac{n!}{n^n} \right)^{\frac{3n^3 + 4}{4n^4 - 1}} \] ### Step 1: Rewrite the limit expression Let \( y = \lim_{n \to \infty} \left( \frac{n!}{n^n} \right)^{\frac{3n^3 + 4}{4n^4 - 1}} \). ### Step 2: Take the natural logarithm Taking the natural logarithm of both sides gives us: \[ \ln y = \lim_{n \to \infty} \frac{3n^3 + 4}{4n^4 - 1} \ln \left( \frac{n!}{n^n} \right) \] ### Step 3: Simplify the logarithm Using Stirling's approximation, we know that \( n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \). Therefore, \[ \ln(n!) \sim \frac{1}{2} \ln(2 \pi n) + n - n \ln n \] So, \[ \ln \left( \frac{n!}{n^n} \right) = \ln(n!) - n \ln n \sim \frac{1}{2} \ln(2 \pi n) + n - n \ln n - n \ln n \] This simplifies to: \[ \ln \left( \frac{n!}{n^n} \right) \sim \frac{1}{2} \ln(2 \pi n) - 2n \ln n \] ### Step 4: Substitute back into the limit Now substituting this back into our expression for \( \ln y \): \[ \ln y = \lim_{n \to \infty} \frac{3n^3 + 4}{4n^4 - 1} \left( \frac{1}{2} \ln(2 \pi n) - 2n \ln n \right) \] ### Step 5: Analyze the limit As \( n \to \infty \), the dominant term in the logarithm will be \( -2n \ln n \). Thus, we can focus on that term: \[ \ln y \sim \lim_{n \to \infty} \frac{3n^3 + 4}{4n^4 - 1} (-2n \ln n) \] ### Step 6: Simplify the fraction The limit of the fraction as \( n \to \infty \) is: \[ \lim_{n \to \infty} \frac{3n^3 + 4}{4n^4 - 1} = \lim_{n \to \infty} \frac{3/n + 4/n^3}{4 - 1/n^4} = 0 \] ### Step 7: Conclude the limit Thus, \[ \ln y = 0 \implies y = e^0 = 1 \] ### Final Answer The value of the limit is: \[ \lim_{n \to \infty} \left( \frac{n!}{n^n} \right)^{\frac{3n^3 + 4}{4n^4 - 1}} = 1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(n->oo) n^(1/n)

lim_(n to oo)(n!)/((n+1)!-n!)

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(nto oo)(1^(3)+2^(3)+3^(3)+……..+n^(3))/((n^(2)+1)^(2))

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

The value of lim_(xtooo) {(1)/(3)+(2)/(21)+(3)/(91)+...+(n)/(n^4+n^2+1)} , is

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

Evaluate: ("lim")_(n rarr oo)[(n !)/(n^n)]^(1//n)