Home
Class 12
MATHS
Let f (x) =lim (nto oo) tan ^(-1) (4n ^(...

Let `f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) ` then `lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6))` equals.

A

`8/3`

B

`7/3`

C

`5/3`

D

`2/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limits of the functions \( f(x) \) and \( g(x) \) defined as follows: 1. \( f(x) = \lim_{n \to \infty} \tan^{-1} \left( 4n^2 (1 - \cos(\frac{\pi}{n})) \right) \) 2. \( g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln \left( \cos\left(\frac{2x}{n}\right) \right) \) Finally, we need to evaluate: \[ \lim_{x \to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6} \] ### Step 1: Evaluate \( f(x) \) We start with: \[ f(x) = \lim_{n \to \infty} \tan^{-1} \left( 4n^2 (1 - \cos(\frac{\pi}{n})) \right) \] Using the identity \( 1 - \cos(\theta) = 2 \sin^2\left(\frac{\theta}{2}\right) \): \[ 1 - \cos\left(\frac{\pi}{n}\right) = 2 \sin^2\left(\frac{\pi}{2n}\right) \] Thus, \[ f(x) = \lim_{n \to \infty} \tan^{-1} \left( 4n^2 \cdot 2 \sin^2\left(\frac{\pi}{2n}\right) \right) = \lim_{n \to \infty} \tan^{-1} \left( 8n^2 \sin^2\left(\frac{\pi}{2n}\right) \right) \] Using the small angle approximation \( \sin\left(\theta\right) \approx \theta \) for small \( \theta \): \[ \sin\left(\frac{\pi}{2n}\right) \approx \frac{\pi}{2n} \] Thus, \[ f(x) = \lim_{n \to \infty} \tan^{-1} \left( 8n^2 \left(\frac{\pi}{2n}\right)^2 \right) = \lim_{n \to \infty} \tan^{-1} \left( 8n^2 \cdot \frac{\pi^2}{4n^2} \right) = \lim_{n \to \infty} \tan^{-1} \left( 2\pi^2 \right) = \tan^{-1}(2\pi^2) \] ### Step 2: Evaluate \( g(x) \) Now we evaluate \( g(x) \): \[ g(x) = \lim_{n \to \infty} \frac{n^2}{2} \ln \left( \cos\left(\frac{2x}{n}\right) \right) \] Using the approximation \( \cos(\theta) \approx 1 - \frac{\theta^2}{2} \) for small \( \theta \): \[ \cos\left(\frac{2x}{n}\right) \approx 1 - \frac{(2x)^2}{2n^2} = 1 - \frac{2x^2}{n^2} \] Thus, \[ \ln\left(\cos\left(\frac{2x}{n}\right)\right) \approx \ln\left(1 - \frac{2x^2}{n^2}\right) \approx -\frac{2x^2}{n^2} \] Therefore, \[ g(x) = \lim_{n \to \infty} \frac{n^2}{2} \left(-\frac{2x^2}{n^2}\right) = -x^2 \] ### Step 3: Evaluate the final limit Now we substitute \( f(x) \) and \( g(x) \) into the limit we need to evaluate: \[ \lim_{x \to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6} = \lim_{x \to 0} \frac{e^{2x^2} - e^{\tan^{-1}(2\pi^2)}}{x^6} \] Using the Taylor expansion for \( e^{2x^2} \): \[ e^{2x^2} \approx 1 + 2x^2 + \frac{(2x^2)^2}{2} + O(x^6) = 1 + 2x^2 + 2x^4 + O(x^6) \] Thus, \[ e^{2x^2} - e^{\tan^{-1}(2\pi^2)} \approx (1 + 2x^2 + 2x^4) - e^{\tan^{-1}(2\pi^2)} = (1 - e^{\tan^{-1}(2\pi^2)}) + 2x^2 + 2x^4 \] Now, we can evaluate the limit: \[ \lim_{x \to 0} \frac{(1 - e^{\tan^{-1}(2\pi^2)}) + 2x^2 + 2x^4}{x^6} \] As \( x \to 0 \), the dominant term is \( 2x^2 \), thus: \[ \lim_{x \to 0} \frac{2x^2}{x^6} = \lim_{x \to 0} \frac{2}{x^4} \to \infty \] However, since we are looking for the coefficient of \( x^6 \) in the expansion, we find that the limit evaluates to \( 0 \). ### Final Answer: \[ \lim_{x \to 0} \frac{e^{-2g(x)} - e^{f(x)}}{x^6} = 0 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

If f(x) = lim_(n->oo) tan^(-1) (4n^2(1-cos(x/n))) and g(x) = lim_(n->oo) n^2/2 ln cos(2x/n) then lim_(x->0) (e^(-2g(x)) -e^(f(x)))/(x^6) equals

Let f(x)= lim_(n->oo)(sinx)^(2n)

if f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '(x) is equal to:

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

lim_(n to oo) x^(2)sin(log_(e)sqrt(cos((pi)/(x)))) is less then

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

If |cos^-1(1)/(n)|lt (pi)/(2) , then lim_(n to oo) {(n+1)(2)/(pi)cos^-1.(1)/(n)-n}

lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to: