Home
Class 12
MATHS
lim (xto0) (""^(3)sqrt(1+sin ^(2)x )- ""...

`lim _(xto0) (""^(3)sqrt(1+sin ^(2)x )- ""^(4) sqrt(1-2 tan x))/(sin x+ tan ^(2) x)` is equal to:

A

`-1`

B

1

C

`1/2`

D

`-1/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \[ \lim_{x \to 0} \frac{\sqrt[3]{1 + \sin^2 x} - \sqrt[4]{1 - 2 \tan x}}{\sin x + \tan^2 x}, \] we will follow these steps: ### Step 1: Identify the form of the limit As \( x \to 0 \), we can evaluate the numerator and denominator separately: - The numerator: - \( \sin^2 x \to 0 \) implies \( \sqrt[3]{1 + \sin^2 x} \to \sqrt[3]{1} = 1 \) - \( \tan x \to 0 \) implies \( \sqrt[4]{1 - 2 \tan x} \to \sqrt[4]{1} = 1 \) - Therefore, the numerator \( \sqrt[3]{1 + \sin^2 x} - \sqrt[4]{1 - 2 \tan x} \to 1 - 1 = 0 \). - The denominator: - \( \sin x \to 0 \) and \( \tan^2 x \to 0 \) implies \( \sin x + \tan^2 x \to 0 + 0 = 0 \). Thus, we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Apply L'Hôpital's Rule Since we have the \( \frac{0}{0} \) form, we can apply L'Hôpital's Rule, which states that we can take the derivative of the numerator and the denominator. ### Step 3: Differentiate the numerator Let \( u = \sqrt[3]{1 + \sin^2 x} \) and \( v = \sqrt[4]{1 - 2 \tan x} \). Using the chain rule: - The derivative of \( u \): \[ \frac{du}{dx} = \frac{1}{3}(1 + \sin^2 x)^{-\frac{2}{3}} \cdot 2 \sin x \cos x = \frac{2 \sin x \cos x}{3(1 + \sin^2 x)^{\frac{2}{3}}} \] - The derivative of \( v \): \[ \frac{dv}{dx} = \frac{1}{4}(1 - 2 \tan x)^{-\frac{3}{4}} \cdot (-2 \sec^2 x) = -\frac{1}{2}(1 - 2 \tan x)^{-\frac{3}{4}} \sec^2 x \] ### Step 4: Differentiate the denominator The derivative of the denominator \( \sin x + \tan^2 x \): \[ \frac{d}{dx}(\sin x + \tan^2 x) = \cos x + 2 \tan x \sec^2 x \] ### Step 5: Substitute back into the limit Now we have: \[ \lim_{x \to 0} \frac{\frac{2 \sin x \cos x}{3(1 + \sin^2 x)^{\frac{2}{3}}} + \frac{1}{2}(1 - 2 \tan x)^{-\frac{3}{4}} \sec^2 x}{\cos x + 2 \tan x \sec^2 x} \] ### Step 6: Evaluate the limit Substituting \( x = 0 \): - For the numerator: - \( \sin x \to 0 \), \( \cos x \to 1 \), and \( \tan x \to 0 \) implies the numerator approaches \( 0 + \frac{1}{2}(1) = \frac{1}{2} \). - For the denominator: - \( \cos x \to 1 \) and \( \tan x \to 0 \) implies the denominator approaches \( 1 + 0 = 1 \). Thus, the limit simplifies to: \[ \frac{\frac{1}{2}}{1} = \frac{1}{2}. \] ### Final Answer The limit is: \[ \lim_{x \to 0} \frac{\sqrt[3]{1 + \sin^2 x} - \sqrt[4]{1 - 2 \tan x}}{\sin x + \tan^2 x} = \frac{1}{2}. \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

f(x)=sqrt(1-sin^(2)x)+sqrt(1+tan^(2)x) then

lim_(xto0) (xcot(4x))/(sin^2x cot^2(2x)) is equal to

lim_(xto0) (sqrt(1-cos 2x))/(sqrt2x) is equal to-

lim_(x to 0) (x tan 3 x)/("sin"^(2) x) is

lim_(xto0)(3-3tan((pi)/4-x))/(sin2x) is equal to

lim_(xto0)(|sin x|)/x is equal to :

lim_(xto1) (1-x^(2))/(sin2pix) is equal to

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

lim_(x to 0) ("sin"2X)/(2 - sqrt(4 - x)) is

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to: