Home
Class 12
MATHS
if f(x)=|[xcosx,2xsinx,xtanx],[1,x,1],[1...

if `f(x)=|[xcosx,2xsinx,xtanx],[1,x,1],[1,2x,1]| ` find `lim_(x->0) f(x)/x^2`

A

0

B

1

C

`-1`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limit: \[ \lim_{x \to 0} \frac{f(x)}{x^2} \] where \[ f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix} \] ### Step 1: Calculate the Determinant First, we will compute the determinant \( f(x) \). \[ f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 1 & 2x & 1 \end{vmatrix} \] ### Step 2: Simplify the Determinant To simplify the determinant, we can perform a row operation. We will subtract the second row from the third row: \[ \text{Row 3} = \text{Row 3} - \text{Row 2} \] This gives us: \[ f(x) = \begin{vmatrix} x \cos x & 2x \sin x & x \tan x \\ 1 & x & 1 \\ 0 & x & 0 \end{vmatrix} \] ### Step 3: Expand the Determinant Now we can expand the determinant along the first column: \[ f(x) = x \cos x \cdot \begin{vmatrix} x & 1 \\ x & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 2x \sin x & x \tan x \\ x & 0 \end{vmatrix} \] Calculating the 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} x & 1 \\ x & 0 \end{vmatrix} = (x)(0) - (1)(x) = -x \] 2. For the second determinant: \[ \begin{vmatrix} 2x \sin x & x \tan x \\ x & 0 \end{vmatrix} = (2x \sin x)(0) - (x \tan x)(x) = -x^2 \tan x \] Putting it all together: \[ f(x) = x \cos x (-x) - (-x^2 \tan x) = -x^2 \cos x + x^2 \tan x \] \[ = x^2 (\tan x - \cos x) \] ### Step 4: Find the Limit Now we need to find: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{x^2 (\tan x - \cos x)}{x^2} = \lim_{x \to 0} (\tan x - \cos x) \] ### Step 5: Evaluate the Limit As \( x \to 0 \): - \(\tan x \to 0\) - \(\cos x \to 1\) Thus, \[ \lim_{x \to 0} (\tan x - \cos x) = 0 - 1 = -1 \] ### Final Answer Therefore, the limit is: \[ \lim_{x \to 0} \frac{f(x)}{x^2} = -1 \]
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|24 Videos
  • LIMIT

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (SUBJECTIVE TYPE PROBLEMS)|7 Videos
  • INVERSE TRIGONOMETRIC FUNTIONS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|5 Videos
  • LOGARITHMS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|19 Videos

Similar Questions

Explore conceptually related problems

f(x)=|[cosx,x,1],[2sinx,x^2,2x],[tanx,x,1]| . Then value of lim_(x->0)(f(x))/x is equal to

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of lim_(xto 0) (f(x))/(x)

f(x)=|{:(cos x, x, 1),(2sin x, x^(2), 2x),(tan x, x, 1):}|." Then find the vlue of lim_(x to 0) (f'(x))/(x).

f(x)= |{:(cos x,,x,,1),(2sin x ,,x^(2),,2x),(tanx ,, x,,1):}| then find the value of underset(xto 0)(" lim ") (f(x))/(x)

If f(x)={(x^2+2,,,xge2),(1-x ,,,xlt2):} ; g(x)={(2x,,,xgt1),(3-x ,,,xle1):} then the value of lim_(x->1) f(g(x)) is

f(x)+f(y)=f((x+y)/(1-xy)) ,for all x,yinR . (xy!=1) ,and lim_(x->0) f(x)/x=2 .Find f(1/sqrt3) and f'(1) .

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

For the function f(x) = 2 . Find lim_(x to 1) f(x)

If f(x) is defined as f(x)={{:(x,0le,xle1),(1,x,=1),(2-x,x,gt1):} then show that lim_(Xrarr1) f(x)=1

If f(x+ y) = f(x) + f(y) for x, y in R and f(1) = 1 , then find the value of lim_(x->0)(2^(f(tan x)-2^f(sin x)))/(x^2*f(sin x))