Home
Class 12
MATHS
Let t1,t2,t3 be the three distinct point...

Let `t_1,t_2,t_3` be the three distinct points on circle |t|=1. if `theta_1,theta_2` and `theta_3` be the arguments of `t_1,t_2,t_3` respectively then `cos(theta_1- theta_2) + cos (theta_2-theta_3)+ cos (theta_3-theta_1)`

A

`ge -3/2`

B

`le-3/2`

C

`ge 3/2`

D

`le 2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) \] where \(\theta_1\), \(\theta_2\), and \(\theta_3\) are the arguments of the points \(t_1\), \(t_2\), and \(t_3\) on the unit circle \(|t| = 1\). ### Step 1: Understanding the Geometry Since \(t_1\), \(t_2\), and \(t_3\) are distinct points on the unit circle, we can visualize these points as dividing the circle into three sectors. The angles between these points will be important for our calculations. ### Step 2: Setting Up the Angles Assume that the angles are evenly spaced around the circle. This means that the angle between each pair of points can be expressed as: \[ \theta_2 - \theta_1 = \frac{2\pi}{3}, \quad \theta_3 - \theta_2 = \frac{2\pi}{3}, \quad \theta_1 - \theta_3 = \frac{2\pi}{3} \] ### Step 3: Evaluating the Cosine Terms Using the cosine of the angles, we can write: \[ \cos(\theta_1 - \theta_2) = \cos\left(-\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) \] \[ \cos(\theta_2 - \theta_3) = \cos\left(-\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) \] \[ \cos(\theta_3 - \theta_1) = \cos\left(-\frac{2\pi}{3}\right) = \cos\left(\frac{2\pi}{3}\right) \] ### Step 4: Summing the Cosine Values Now, we can sum these values: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) = 3 \cos\left(\frac{2\pi}{3}\right) \] ### Step 5: Calculating \(\cos\left(\frac{2\pi}{3}\right)\) The value of \(\cos\left(\frac{2\pi}{3}\right)\) is: \[ \cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2} \] Thus, we have: \[ 3 \cos\left(\frac{2\pi}{3}\right) = 3 \left(-\frac{1}{2}\right) = -\frac{3}{2} \] ### Conclusion Therefore, we conclude that: \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) = -\frac{3}{2} \] This value indicates that the expression is equal to \(-\frac{3}{2}\), which matches with one of the options provided in the question. ### Final Answer \[ \cos(\theta_1 - \theta_2) + \cos(\theta_2 - \theta_3) + \cos(\theta_3 - \theta_1) = -\frac{3}{2} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

Let z_(1),z_(2) and z_(3) be three points on |z|=1 . If theta_(1), theta_(2) and theta_(3) be the arguments of z_(1),z_(2),z_(3) respectively, then cos(theta_(1)-theta_(2))+cos(theta_(2)-theta_(3))+cos(theta_(3)-theta_(1))

Prove that (cos^3 theta-sin^3 theta)/(cos theta-sin theta) = 1+cos theta sin theta

Prove that : (2 cos^(3) theta-cos theta)/(sin theta-2 sin^(3)theta)=cot theta

(2 sin theta*cos theta - cos theta)/(1-sin theta+sin^2 theta-cos^2 theta) = cot theta

1 + (cos 2 theta + cos 6 theta)/(cos 4 theta) = (sin 3 theta)/(sin theta).

Prove that cos^6 theta+ sin^6 theta= 1-3sin^2 theta cos^2 theta

(1+sin 2theta+cos 2theta)/(1+sin2 theta-cos 2 theta) =

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3 , then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If sintheta_(1)+sintheta_(2)+sintheta_(3)=3, then cos theta_(1)+cos theta_(2)+cos theta_(3)=

If theta=(pi)/(7), show that cos theta cos 2theta cos 3 theta = (1)/(8) .