Home
Class 12
MATHS
If alpha and beta are complex numbers t...

If ` alpha and beta` are complex numbers then the maximum value of `(alpha barbeta+baralphabeta)/(|alpha beta|)=` (A) 1 (B) 2 (C) gt2 (D) lt1

A

1

B

2

C

greater than 2

D

less than 1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of the expression: \[ \frac{\alpha \bar{\beta} + \bar{\alpha} \beta}{|\alpha \beta|} \] where \(\alpha\) and \(\beta\) are complex numbers. ### Step-by-Step Solution: 1. **Express \(\alpha\) and \(\beta\) in polar form**: Let \(\alpha = r_1 e^{i\theta_1}\) and \(\beta = r_2 e^{i\theta_2}\), where \(r_1\) and \(r_2\) are the magnitudes of \(\alpha\) and \(\beta\) respectively, and \(\theta_1\) and \(\theta_2\) are their arguments. 2. **Find \(\bar{\alpha}\) and \(\bar{\beta}\)**: The conjugates are given by: \[ \bar{\alpha} = r_1 e^{-i\theta_1}, \quad \bar{\beta} = r_2 e^{-i\theta_2} \] 3. **Calculate \(\alpha \bar{\beta}\) and \(\bar{\alpha} \beta\)**: \[ \alpha \bar{\beta} = (r_1 e^{i\theta_1})(r_2 e^{-i\theta_2}) = r_1 r_2 e^{i(\theta_1 - \theta_2)} \] \[ \bar{\alpha} \beta = (r_1 e^{-i\theta_1})(r_2 e^{i\theta_2}) = r_1 r_2 e^{-i(\theta_1 - \theta_2)} \] 4. **Combine the two expressions**: \[ \alpha \bar{\beta} + \bar{\alpha} \beta = r_1 r_2 \left(e^{i(\theta_1 - \theta_2)} + e^{-i(\theta_1 - \theta_2)}\right) \] Using Euler's formula, this simplifies to: \[ = r_1 r_2 \cdot 2 \cos(\theta_1 - \theta_2) \] 5. **Calculate the modulus \(|\alpha \beta|\)**: \[ |\alpha \beta| = |\alpha| |\beta| = r_1 r_2 \] 6. **Substitute back into the original expression**: \[ \frac{\alpha \bar{\beta} + \bar{\alpha} \beta}{|\alpha \beta|} = \frac{r_1 r_2 \cdot 2 \cos(\theta_1 - \theta_2)}{r_1 r_2} \] This simplifies to: \[ 2 \cos(\theta_1 - \theta_2) \] 7. **Determine the maximum value**: The maximum value of \(\cos(\theta_1 - \theta_2)\) is 1, which occurs when \(\theta_1 - \theta_2 = 0\) (i.e., \(\theta_1 = \theta_2\)). Thus, the maximum value of the expression is: \[ 2 \cdot 1 = 2 \] ### Final Answer: The maximum value of \(\frac{\alpha \bar{\beta} + \bar{\alpha} \beta}{|\alpha \beta|}\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha and beta are different complex numbers with |beta|=1, then find |(beta-alpha)/(1- baralphabeta)| .

If alpha + beta = 90^0 , show that the maximum value of cos alpha.cos beta is 1/2 .

If alpha and beta are roots of the equation x^(2)-2x+1=0 , then the value of (alpha)/(beta)+(beta)/(alpha) is

If alpha and beta are zeroes of the polynomial 3x^(2)+6x+1 , then find the value of alpha+beta+alpha beta .

If alpha and beta are the complex cube roots of unity, show that alpha^4+beta^4 + alpha^-1 beta^-1 = 0.

If sin alpha sin beta - cos alpha cos beta + 1=0, then the value of 1+cot alpha tan beta is

If alpha and beta are the complex cube roots of unity, then prove that (1 + alpha) (1 + beta) (1 + alpha)^(2) (1+ beta)^(2)=1