Home
Class 12
MATHS
If arg((z-6-3i)/(z-3-6i))=pi/4 , then ma...

If arg`((z-6-3i)/(z-3-6i))=pi/4` , then maximum value of |z| :

A

A) `6sqrt{2} + 3`

B

B) `6sqrt{3} + 3`

C

C) `sqrt{2} + 3`

D

D) `6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the maximum value of |z| given that: \[ \arg\left(\frac{z - 6 - 3i}{z - 3 - 6i}\right) = \frac{\pi}{4} \] ### Step-by-Step Solution: 1. **Express z in terms of x and y:** Let \( z = x + yi \), where \( x \) and \( y \) are real numbers. 2. **Rewrite the argument condition:** The condition can be rewritten using the property of arguments: \[ \arg(z - 6 - 3i) - \arg(z - 3 - 6i) = \frac{\pi}{4} \] 3. **Substitute z:** Substitute \( z \) into the equation: \[ \arg((x - 6) + (y - 3)i) - \arg((x - 3) + (y - 6)i) = \frac{\pi}{4} \] 4. **Use the definition of argument:** The argument of a complex number \( a + bi \) can be expressed as \( \tan^{-1}\left(\frac{b}{a}\right) \). Thus, we have: \[ \tan^{-1}\left(\frac{y - 3}{x - 6}\right) - \tan^{-1}\left(\frac{y - 6}{x - 3}\right) = \frac{\pi}{4} \] 5. **Take the tangent of both sides:** Using the tangent subtraction formula: \[ \tan\left(\tan^{-1}\left(\frac{y - 3}{x - 6}\right) - \tan^{-1}\left(\frac{y - 6}{x - 3}\right)\right) = 1 \] This leads to: \[ \frac{\frac{y - 3}{x - 6} - \frac{y - 6}{x - 3}}{1 + \frac{y - 3}{x - 6} \cdot \frac{y - 6}{x - 3}} = 1 \] 6. **Cross-multiply and simplify:** Cross-multiplying gives: \[ \left(y - 3\right)(x - 3) - \left(y - 6\right)(x - 6) = (x - 6)(x - 3) + (y - 6)(y - 3) \] 7. **Expand and rearrange:** After expanding and simplifying, we arrive at: \[ (x - 6)^2 + (y - 6)^2 = 9 \] This represents a circle centered at \( (6, 6) \) with a radius of \( 3 \). 8. **Find the maximum distance from the origin:** The maximum value of \( |z| \) occurs at the point on the circle that is farthest from the origin. The distance from the center \( (6, 6) \) to the origin is: \[ \sqrt{6^2 + 6^2} = 6\sqrt{2} \] Adding the radius of the circle: \[ \text{Maximum } |z| = 6\sqrt{2} + 3 \] 9. **Conclusion:** Therefore, the maximum value of \( |z| \) is: \[ \boxed{6\sqrt{2} + 3} \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If z satisfies the condition arg (z + i) = (pi)/(4) . Then the minimum value of |z + 1 - i| + |z - 2 + 3 i| is _______.

If |z-i| ≤ 2 and z_0 = 5+3i , the maximum value of |i z + z_0| is

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

Let the complex numbers z of the form x+iy satisfy arg ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3 . Then the ordered pairs (x,y) are (A) (4- 4/sqrt(5), 1+2/sqrt(5)) (B) (4+5/sqrt(5),1-2/sqrt(5)) (C) (6-1) (D) (0,1)

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.

If |z|lt=4 , then find the maximum value of |i z+3-4i|dot

If z is any complex number satisfying |z-3-2i|lt=2 then the maximum value of |2z-6+5i| is

If arg z = pi/4 ,then

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|

If | (z - i)/(z + 2i)| = 1, |z| = 5/2 then the value of |z + 3i|