Home
Class 12
MATHS
Let z be a complex number satisfying 1/2...

Let z be a complex number satisfying `1/2 le |z| le 4` , then sum of greatest and least values of `|z+1/z|` is :

A

`65/4`

B

`65/16`

C

`17/4`

D

17

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the sum of the greatest and least values of \( |z + \frac{1}{z}| \) given that \( \frac{1}{2} \leq |z| \leq 4 \). ### Step-by-Step Solution: 1. **Let \( z = r e^{i\theta} \)**: Since \( z \) is a complex number, we can express it in polar form where \( r = |z| \) and \( \theta \) is the argument of \( z \). 2. **Express \( z + \frac{1}{z} \)**: \[ z + \frac{1}{z} = r e^{i\theta} + \frac{1}{r} e^{-i\theta} \] This can be rewritten as: \[ z + \frac{1}{z} = r \cos \theta + i r \sin \theta + \frac{1}{r} \cos \theta - i \frac{1}{r} \sin \theta \] Combining real and imaginary parts: \[ = \left( r + \frac{1}{r} \right) \cos \theta + i \left( r - \frac{1}{r} \right) \sin \theta \] 3. **Find the modulus**: The modulus of \( z + \frac{1}{z} \) is given by: \[ |z + \frac{1}{z}| = \sqrt{\left( r + \frac{1}{r} \right)^2 \cos^2 \theta + \left( r - \frac{1}{r} \right)^2 \sin^2 \theta} \] 4. **Simplify the expression**: Expanding the squares: \[ = \sqrt{\left( r^2 + 2 + \frac{1}{r^2} \right) \cos^2 \theta + \left( r^2 - 2 + \frac{1}{r^2} \right) \sin^2 \theta} \] \[ = \sqrt{r^2 \cos^2 \theta + \frac{1}{r^2} \cos^2 \theta + r^2 \sin^2 \theta + \frac{1}{r^2} \sin^2 \theta + 2 \cos^2 \theta - 2 \sin^2 \theta} \] \[ = \sqrt{r^2 + \frac{1}{r^2} + 2 \cos^2 \theta - 2 \sin^2 \theta} \] \[ = \sqrt{r^2 + \frac{1}{r^2} + 2 \cos(2\theta)} \] 5. **Determine the maximum and minimum values**: - The term \( \cos(2\theta) \) varies between -1 and 1. - Therefore, the maximum value occurs when \( \cos(2\theta) = 1 \): \[ |z + \frac{1}{z}|_{\text{max}} = \sqrt{r^2 + \frac{1}{r^2} + 2} = \sqrt{\left(r + \frac{1}{r}\right)^2} \] Thus, \( |z + \frac{1}{z}|_{\text{max}} = r + \frac{1}{r} \). - The minimum value occurs when \( \cos(2\theta) = -1 \): \[ |z + \frac{1}{z}|_{\text{min}} = \sqrt{r^2 + \frac{1}{r^2} - 2} = \sqrt{\left(r - \frac{1}{r}\right)^2} \] Thus, \( |z + \frac{1}{z}|_{\text{min}} = r - \frac{1}{r} \). 6. **Evaluate for the given bounds of \( r \)**: - For \( r = 4 \): \[ |z + \frac{1}{z}|_{\text{max}} = 4 + \frac{1}{4} = \frac{17}{4} \] \[ |z + \frac{1}{z}|_{\text{min}} = 4 - \frac{1}{4} = \frac{15}{4} \] - For \( r = \frac{1}{2} \): \[ |z + \frac{1}{z}|_{\text{max}} = \frac{1}{2} + 2 = \frac{5}{2} \] \[ |z + \frac{1}{z}|_{\text{min}} = \frac{1}{2} - 2 = -\frac{3}{2} \text{ (not valid since modulus cannot be negative)} \] 7. **Sum of greatest and least values**: The greatest value is \( \frac{17}{4} \) and the least value is \( 0 \) (since \( |z + \frac{1}{z}| \) cannot be negative). \[ \text{Sum} = \frac{17}{4} + 0 = \frac{17}{4} \] ### Final Answer: The sum of the greatest and least values of \( |z + \frac{1}{z}| \) is \( \frac{17}{4} \).
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

Let z be a complex number satisfying |z+16|=4|z+1| . Then

1. If |z-2+i| ≤ 2 then find the greatest and least value of | z|

1. If |z-2+i|≤ 2 then find the greatest and least value of | z|

If |z-4 +3i| le 2 then the least and the greatest values of |z| are q

If 0 le "arg"(z) le pi/4 , then the least value of |z-i| , is

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|dot

Let z be a complex number satisfying the equation (z^3+3)^2=-16 , then find the value of |z|

If z complex number satisfying |z-1| = 1 , then which of the following is correct

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is

If z is a complex number satisfying z^4+z^3+2z^2+z+1=0 then the set of possible values of z is