Home
Class 12
MATHS
Let x-1/x=(sqrt2)i where i=sqrt(-1) . Th...

Let `x-1/x=(sqrt2)i` where `i=sqrt(-1)` . Then the value of `x^(2187)-1/x^(2187)` is :

A

`isqrt2`

B

`-isqrt2`

C

`-2`

D

`i/sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( x - \frac{1}{x} = \sqrt{2}i \), where \( i = \sqrt{-1} \), and find the value of \( x^{2187} - \frac{1}{x^{2187}} \), we will follow these steps: ### Step-by-Step Solution: 1. **Start with the given equation:** \[ x - \frac{1}{x} = \sqrt{2}i \] 2. **Square both sides:** \[ \left(x - \frac{1}{x}\right)^2 = (\sqrt{2}i)^2 \] Expanding the left side: \[ x^2 - 2 + \frac{1}{x^2} = -2 \] Thus, we have: \[ x^2 + \frac{1}{x^2} - 2 = -2 \] Simplifying gives: \[ x^2 + \frac{1}{x^2} = 0 \] 3. **Multiply through by \( x^2 \) to eliminate the fraction:** \[ x^4 + 1 = 0 \] This implies: \[ x^4 = -1 \] 4. **Find the roots of \( x^4 = -1 \):** The solutions to this equation are: \[ x = e^{i\frac{\pi}{4}}, e^{i\frac{3\pi}{4}}, e^{i\frac{5\pi}{4}}, e^{i\frac{7\pi}{4}} \] 5. **Now, we need to find \( x^{2187} - \frac{1}{x^{2187}} \):** First, we calculate \( x^{2187} \): Since \( x^4 = -1 \), we can express \( x^{2187} \) in terms of \( x^4 \): \[ 2187 \mod 4 = 3 \] Thus: \[ x^{2187} = x^3 \] 6. **Next, calculate \( \frac{1}{x^{2187}} \):** Since \( x^{2187} = x^3 \): \[ \frac{1}{x^{2187}} = \frac{1}{x^3} \] 7. **Now, find \( x^3 - \frac{1}{x^3} \):** Using the identity: \[ x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right)\left(x^2 + 1 + \frac{1}{x^2}\right) \] We already found that \( x - \frac{1}{x} = \sqrt{2}i \) and \( x^2 + \frac{1}{x^2} = 0 \), thus: \[ x^2 + 1 + \frac{1}{x^2} = 1 \] Therefore: \[ x^3 - \frac{1}{x^3} = \sqrt{2}i \cdot 1 = \sqrt{2}i \] 8. **Final result:** Thus, the value of \( x^{2187} - \frac{1}{x^{2187}} \) is: \[ \sqrt{2}i \]
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If x=4+3i (where i =sqrt(-1)), then the value of x ^(3)-4x ^(2)-7x+12 equals:

If x=4+3i (where I =sqrt(-1)), then the value of x ^(3)-4x ^(2)-7x+12 equals:

If x = sqrt(3)- sqrt(2) find the value of x+(1)/(x)

If x= -2 - sqrt3i , where i= sqrt(-1 , find the value of 2x^(4) + 5x^(3) + 7x^(2)-x+ 41

If alpha and beta are the complex roots of the equation (1+i)x^(2)+(1-i)x-2i=o where i=sqrt(-1) , the value of |alpha-beta|^(2) is

let f(x)=sqrt(1+x^2) then

Let f(x) = x^4 + ax^3 + bx^2 + cx + d be a polynomial with real coefficients and real roots. If |f(i)|=1where i=sqrt(-1) , then the value of a +b+c+d is

find the value of x [x^(x)]^(1/sqrtx)=2^sqrt2

If 2x=a-(1)/(a) , where a gt0 , what is the value of sqrt((x^(2)+1))+x ?

Let f(x)=(1)/(x) and g(x)=(1)/(sqrt(x)) . Then,