Home
Class 12
MATHS
If Z=(7+i)/(3+4i) , then find Z^14....

If `Z=(7+i)/(3+4i)` , then find `Z^14`.

A

`2^7`

B

`(-2)^7`

C

`(2^7) i`

D

`(-2^7) i`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( Z^{14} \) where \( Z = \frac{7+i}{3+4i} \), we will follow these steps: ### Step 1: Simplify \( Z \) We start by simplifying \( Z \) by multiplying the numerator and the denominator by the conjugate of the denominator. \[ Z = \frac{7+i}{3+4i} \cdot \frac{3-4i}{3-4i} = \frac{(7+i)(3-4i)}{(3+4i)(3-4i)} \] ### Step 2: Calculate the Denominator Now, calculate the denominator: \[ (3+4i)(3-4i) = 3^2 - (4i)^2 = 9 - 16(-1) = 9 + 16 = 25 \] ### Step 3: Calculate the Numerator Next, calculate the numerator: \[ (7+i)(3-4i) = 21 - 28i + 3i - 4i^2 = 21 - 25i + 4 = 25 - 25i \] ### Step 4: Combine Results Now, combine the results: \[ Z = \frac{25 - 25i}{25} = 1 - i \] ### Step 5: Convert to Polar Form Next, we convert \( Z \) to polar form. We can express \( Z = 1 - i \) in polar coordinates. 1. Calculate the modulus \( r \): \[ r = |Z| = \sqrt{1^2 + (-1)^2} = \sqrt{2} \] 2. Calculate the argument \( \theta \): \[ \theta = \tan^{-1}\left(\frac{-1}{1}\right) = -\frac{\pi}{4} \] Thus, we can write \( Z \) in polar form: \[ Z = \sqrt{2} \left( \cos\left(-\frac{\pi}{4}\right) + i \sin\left(-\frac{\pi}{4}\right) \right) = \sqrt{2} e^{-i\frac{\pi}{4}} \] ### Step 6: Calculate \( Z^{14} \) Now we can find \( Z^{14} \): \[ Z^{14} = \left(\sqrt{2} e^{-i\frac{\pi}{4}}\right)^{14} = (\sqrt{2})^{14} \cdot e^{-i\frac{14\pi}{4}} = 2^7 \cdot e^{-i\frac{7\pi}{2}} \] ### Step 7: Simplify the Exponential Now simplify \( e^{-i\frac{7\pi}{2}} \): \[ -\frac{7\pi}{2} = -3\pi - \frac{\pi}{2} = -3\pi + 2\pi - \frac{\pi}{2} = -\pi - \frac{\pi}{2} = -\frac{3\pi}{2} \] Thus, \[ Z^{14} = 2^7 \cdot e^{-i\frac{3\pi}{2}} = 128 \cdot \left( \cos\left(-\frac{3\pi}{2}\right) + i \sin\left(-\frac{3\pi}{2}\right) \right) \] ### Step 8: Evaluate the Trigonometric Functions We know: \[ \cos\left(-\frac{3\pi}{2}\right) = 0, \quad \sin\left(-\frac{3\pi}{2}\right) = -1 \] Thus, \[ Z^{14} = 128 \cdot (0 - i) = -128i \] ### Final Answer \[ Z^{14} = -128i \] ---
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-2 : ONE OR MORE THAN ONE ANSWER IS / ARE CORRECT|9 Videos
  • COMPLEX NUMBERS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-3:COMPREHENSION TYPE PROBLEMS|8 Videos
  • CIRCLE

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise - 5 : Subjective Type Problems|13 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos

Similar Questions

Explore conceptually related problems

If z=(1+7i)/((2-i)^2) , then find |z|?

If z=(3-sqrt(7)i) , then find |z^(-1)| .

If z=(1+i tan alpha)^(1+i) , then find the magnitude of Z.

If |z-(4 + 3i) |=1, then find the complex number z for each of the following cases: (i) |z| is least (ii) |z| is greatest (iii) arg(z) is least (iv) arg(z) is greatest

If |z +2 - i |=5 then the maximum value of |3z+9-7i| is K, then find k

if z_(1)=2+3i, z_(2)=1-iand z_(3) = 3+ 4i ,then find z_(1)z_(2) +z_(3)

if z_(1) = 3-i and z_(2) = -3 +i, then find Re ((z_(1)z_(2))/(barz_(1)))

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

z = (7-5i)/(11+ 4i) , Which of the following options is equivlent to z where the imaginary number I is such that i^(2) = - 1 ?

If z_(1)=2-i, z_(2)=1+ 2i, then find the value of the following : (i) Re((z_(1)*z_(2))/(bar(z)_(2))) (ii) Im (z_(1)*bar(z)_(2))