Home
Class 12
MATHS
If f (x) is a thrice differentiable func...

If `f (x)` is a thrice differentiable function such that `lim _(xto0)(f (4x) -3 f(3x) +3f (2x) -f (x))/(x ^(3))=12` then the vlaue of `f '''(0)` equais to :

A

0

B

1

C

12

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the limit given and find the value of \( f'''(0) \). Given: \[ \lim_{x \to 0} \frac{f(4x) - 3f(3x) + 3f(2x) - f(x)}{x^3} = 12 \] ### Step 1: Taylor Expansion Since \( f(x) \) is a thrice differentiable function, we can use the Taylor series expansion around \( x = 0 \): \[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + o(x^3) \] ### Step 2: Substitute \( 4x, 3x, 2x, x \) Now, we substitute \( 4x, 3x, 2x, \) and \( x \) into the Taylor expansion: - For \( f(4x) \): \[ f(4x) = f(0) + f'(0)(4x) + \frac{f''(0)}{2}(4x)^2 + \frac{f'''(0)}{6}(4x)^3 + o(x^3) \] \[ = f(0) + 4f'(0)x + 8f''(0)x^2 + \frac{64}{6}f'''(0)x^3 + o(x^3) \] - For \( f(3x) \): \[ f(3x) = f(0) + f'(0)(3x) + \frac{f''(0)}{2}(3x)^2 + \frac{f'''(0)}{6}(3x)^3 + o(x^3) \] \[ = f(0) + 3f'(0)x + \frac{9}{2}f''(0)x^2 + \frac{27}{6}f'''(0)x^3 + o(x^3) \] - For \( f(2x) \): \[ f(2x) = f(0) + f'(0)(2x) + \frac{f''(0)}{2}(2x)^2 + \frac{f'''(0)}{6}(2x)^3 + o(x^3) \] \[ = f(0) + 2f'(0)x + 2f''(0)x^2 + \frac{8}{6}f'''(0)x^3 + o(x^3) \] - For \( f(x) \): \[ f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3 + o(x^3) \] ### Step 3: Combine the Expansions Now we substitute these expansions into the limit expression: \[ f(4x) - 3f(3x) + 3f(2x) - f(x) = [f(0) + 4f'(0)x + 8f''(0)x^2 + \frac{64}{6}f'''(0)x^3] - 3[f(0) + 3f'(0)x + \frac{9}{2}f''(0)x^2 + \frac{27}{6}f'''(0)x^3] + 3[f(0) + 2f'(0)x + 2f''(0)x^2 + \frac{8}{6}f'''(0)x^3] - [f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(0)}{6}x^3] \] ### Step 4: Simplify Combining like terms: - Constant terms: \( f(0) - 3f(0) + 3f(0) - f(0) = 0 \) - Linear terms: \( 4f'(0)x - 9f'(0)x + 6f'(0)x - f'(0)x = 0 \) - Quadratic terms: \( 8f''(0)x^2 - \frac{27}{2}f''(0)x^2 + 6f''(0)x^2 - \frac{1}{2}f''(0)x^2 = 0 \) For cubic terms: \[ \frac{64}{6}f'''(0)x^3 - \frac{81}{6}f'''(0)x^3 + 4f'''(0)x^3 - \frac{1}{6}f'''(0)x^3 \] This simplifies to: \[ \left( \frac{64 - 81 + 24 - 1}{6} \right) f'''(0)x^3 = \frac{6f'''(0)}{6}x^3 = f'''(0)x^3 \] ### Step 5: Set the Limit Now we have: \[ \lim_{x \to 0} \frac{f'''(0)x^3}{x^3} = f'''(0) = 12 \] ### Conclusion Thus, the value of \( f'''(0) \) is: \[ \boxed{12} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a twice-differentiable function and f''(0)=2. Then evaluate lim_(xto0) (2f(x)-3f(2x)+f(4x))/(x^(2)).

Let f(x) be a twice-differentiable function and f"(0)=2. The evaluate: ("lim")_(xvec0)(2f(x)-3f(2x)+f(4x))/(x^2)

If f(x) is a differentiable function satisfying |f'(x)|le4AA x in [0, 4] and f(0)=0 , then

Let f(x) be continuous and differentiable function for all reals and f(x + y) = f(x) - 3xy + ff(y). If lim_(h to 0)(f(h))/(h) = 7 , then the value of f'(x) is

Let f be differentiable function such that f'(x)=7-3/4(f(x))/x,(xgt0) and f(1)ne4" Then " lim_(xto0^+) xf(1/x)

Let f be a differentiable function such that f'(x) = f(x) + int_(0)^(2) f(x) dx and f(0) = (4-e^(2))/(3) . Find f(x) .

If f(x) is a differentiable real valued function satisfying f''(x)-3f'(x) gt 3 AA x ge 0 and f'(0)=-1, then f(x)+x AA x gt 0 is

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

If f(x) is a real valued function such that f(x + 6) - f(x + 3) + f(x) = 0, AA x in R , then period of f(x) is

Let f(x) be a function such that ("lim")_(xvec0)(f(x))/x=1 and ("lim")_(xvec0)(x(1+acosx)-bsinx)/((f(x))^3)=1 , then b-3a is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) is a thrice differentiable function such that lim (xto0)(f (4...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |