Home
Class 12
MATHS
If f(x)=|sinx-|cosx||, then the value of...

If `f(x)=|sinx-|cosx||,` then the value of `f^(')(x)` at `x=(7pi)/6` is

A

`(sqrt3+1)/(2)`

B

`(1-sqrt3)/(2)`

C

`(sqrt3-1)/(2)`

D

`(-1-sqrt3)/(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( f'(x) \) at \( x = \frac{7\pi}{6} \) for the function \( f(x) = |\sin x - |\cos x|| \), we will follow these steps: ### Step 1: Determine the Quadrant The angle \( \frac{7\pi}{6} \) lies in the third quadrant. In this quadrant, both sine and cosine are negative. ### Step 2: Simplify the Function Since \( \frac{7\pi}{6} \) is in the third quadrant: - \( \sin\left(\frac{7\pi}{6}\right) < 0 \) so \( |\sin\left(\frac{7\pi}{6}\right)| = -\sin\left(\frac{7\pi}{6}\right) \) - \( \cos\left(\frac{7\pi}{6}\right) < 0 \) so \( |\cos\left(\frac{7\pi}{6}\right)| = -\cos\left(\frac{7\pi}{6}\right) \) Thus, we can write: \[ f(x) = -\sin x + \cos x \] ### Step 3: Differentiate the Function Now we differentiate \( f(x) \): \[ f'(x) = -\cos x - \sin x \] ### Step 4: Evaluate the Derivative at \( x = \frac{7\pi}{6} \) Now we need to evaluate \( f'\left(\frac{7\pi}{6}\right) \): \[ f'\left(\frac{7\pi}{6}\right) = -\cos\left(\frac{7\pi}{6}\right) - \sin\left(\frac{7\pi}{6}\right) \] ### Step 5: Calculate the Values of Sine and Cosine Using the angle \( \frac{7\pi}{6} = \pi + \frac{\pi}{6} \): - \( \sin\left(\frac{7\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2} \) - \( \cos\left(\frac{7\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2} \) Substituting these values into the derivative: \[ f'\left(\frac{7\pi}{6}\right) = -\left(-\frac{\sqrt{3}}{2}\right) - \left(-\frac{1}{2}\right) \] \[ = \frac{\sqrt{3}}{2} + \frac{1}{2} \] \[ = \frac{\sqrt{3} + 1}{2} \] ### Final Answer Thus, the value of \( f'\left(\frac{7\pi}{6}\right) \) is: \[ \frac{\sqrt{3} + 1}{2} \] ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f (x) =|sin x-|cos x ||, then f '((7pi)/(6))=

f(x)=sinx+cosx+3 . find the range of f(x).

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)| , then the value of int_0^(pi//2){f(x) + f'(x)} dx is

If f(x) = 2 sinx, g(x) = cos^(2) x , then the value of (f+g)((pi)/(3))

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

If F(x) = sinx+cosx, then the most general solution of F(x) = [F((pi)/(10))] are: (where [x] is the greatest integer less than or equal to 'x')

If f(x)=|cosx-sinx| , then f'(pi/4) is equal to

If f(x)=|cosx-sinx| , then f'(pi/2) is equal to

If f(x)=sinx + cosx . Then the most general solutions of f(x)=[f(pi/10)] is (where [x] is the gretest integer less than or equal to x)

Let f(x)=|(2cos^2x,sin2x,-sinx),(sin2x,2sin^2x,cosx),(sinx,-cosx,0)| . Then the value of int_0^(pi//2)[f(x)+f^(prime)(x)]dx is a. pi b. pi//2 c. 2pi d. 3pi//2

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f(x)=|sinx-|cosx||, then the value of f^(')(x) at x=(7pi)/6 is

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |