Home
Class 12
MATHS
let f(x)={(ax+1, if x le 1),(3, if x=1)...

let `f(x)={(ax+1, if x le 1),(3, if x=1),(bx^2+1,if x > 1))` if `f(x)` is continuous at `x=1` then value of `a-b` is (A) `0` (B) `1` (C) `2` (D) `4`

A

0

B

1

C

2

D

4

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to ensure that the function \( f(x) \) is continuous at \( x = 1 \). The function is defined as follows: \[ f(x) = \begin{cases} ax + 1 & \text{if } x < 1 \\ 3 & \text{if } x = 1 \\ bx^2 + 1 & \text{if } x > 1 \end{cases} \] ### Step 1: Find the left-hand limit as \( x \) approaches 1 The left-hand limit of \( f(x) \) as \( x \) approaches 1 is given by the expression for \( f(x) \) when \( x < 1 \): \[ \lim_{x \to 1^-} f(x) = a(1) + 1 = a + 1 \] ### Step 2: Find the right-hand limit as \( x \) approaches 1 The right-hand limit of \( f(x) \) as \( x \) approaches 1 is given by the expression for \( f(x) \) when \( x > 1 \): \[ \lim_{x \to 1^+} f(x) = b(1^2) + 1 = b + 1 \] ### Step 3: Set the left-hand limit equal to the right-hand limit For the function to be continuous at \( x = 1 \), the left-hand limit must equal the right-hand limit, and both must equal \( f(1) \): \[ a + 1 = 3 \quad \text{(since \( f(1) = 3 \))} \] ### Step 4: Solve for \( a \) From the equation \( a + 1 = 3 \): \[ a = 3 - 1 = 2 \] ### Step 5: Set the right-hand limit equal to \( f(1) \) Now we set the right-hand limit equal to \( f(1) \): \[ b + 1 = 3 \] ### Step 6: Solve for \( b \) From the equation \( b + 1 = 3 \): \[ b = 3 - 1 = 2 \] ### Step 7: Calculate \( a - b \) Now that we have both \( a \) and \( b \): \[ a - b = 2 - 2 = 0 \] ### Conclusion Thus, the value of \( a - b \) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If the function f(x)= {(3ax +b", " x gt 1 ),(11 ", "x=1),(5 ax-2b", " x lt 1):} continuous at x= 1 then ( a, b) =?

f(x){{:(2x "," if x lt 0 ),(0"," if 0 le x le 1),(4x "," if x gt 1 ):} Discuss the continuity

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f(x)={(1/(|x|), for |x| ge 1),(ax^2+b,for |x| < 1)) . If f(x) is continuous and differentiable at any point, then (A) a=1/2, b=-3/2 (B) a=-1/2, b=3/2 (C) a=1,b=-1 (D) none of these

If the function f(x)={(Ax-B ,, x le 1),(3x ,,1 lt x lt 2),(Bx^2-A ,, x ge 2):} is continuous at x=1 and discontinuous at x=2 , find the values of A and B .

Let f(x)={{:(,x^(3),x lt 1),(,ax^(2)+bx+c,:x ge 1):} . If f''(1) exists, then the value of (a^(2)+b^(2)+c^(2)) is

Let f(x)=x+2|x+1|+2|x-1|dot If f(x)=k has exactly one real solution, then the value of k is (a) 3 (b) 0 (c) 1 (d) 2

If f(x)=(2x+sin^(-1)x)/(2x-tan^(-1)x) is continuous for all x in (-1,1) , then value of f (0) is

Let f(x)=lim_(n rarr oo)(x^(2n-1)+ax^(2)+bx)/(x^(2n)+1). If f(x) is continuous for all x in R then find the values of a and b.

Let f(x) = {{:(Ax - B,x le 1),(2x^(2) + 3Ax + B,x in (-1, 1]),(4,x gt 1):} Statement I f(x) is continuous at all x if A = (3)/(4), B = - (1)/(4) . Because Statement II Polynomial function is always continuous.

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. let f(x)={(ax+1, if x le 1),(3, if x=1),(bx^2+1,if x > 1)) if f(x) is...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |