Home
Class 12
MATHS
Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x...

Let ` f (x) = x^(3)+ 4x ^(2)+ 6x and g (x)` be inverse then the vlaue of `g' (-4):`

A

`-2`

B

2

C

`1/2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( g'(-4) \) where \( g(x) \) is the inverse of the function \( f(x) = x^3 + 4x^2 + 6x \). ### Step-by-step Solution: 1. **Understanding the relationship between \( f \) and \( g \)**: Since \( g(x) \) is the inverse of \( f(x) \), we have: \[ g(f(x)) = x \] Taking the derivative of both sides with respect to \( x \): \[ g'(f(x)) \cdot f'(x) = 1 \] This implies: \[ g'(f(x)) = \frac{1}{f'(x)} \] 2. **Finding \( f'(x) \)**: First, we need to compute the derivative \( f'(x) \): \[ f(x) = x^3 + 4x^2 + 6x \] Using the power rule: \[ f'(x) = 3x^2 + 8x + 6 \] 3. **Finding \( x \) such that \( f(x) = -4 \)**: We need to find \( x \) such that: \[ f(x) = -4 \] This gives us the equation: \[ x^3 + 4x^2 + 6x + 4 = 0 \] Rearranging: \[ x^3 + 4x^2 + 6x + 4 = 0 \] 4. **Finding the roots of the polynomial**: We can try \( x = -2 \): \[ (-2)^3 + 4(-2)^2 + 6(-2) + 4 = -8 + 16 - 12 + 4 = 0 \] Therefore, \( x = -2 \) is a root. 5. **Finding \( f'(-2) \)**: Now we substitute \( x = -2 \) into \( f'(x) \): \[ f'(-2) = 3(-2)^2 + 8(-2) + 6 = 3(4) - 16 + 6 = 12 - 16 + 6 = 2 \] 6. **Finding \( g'(-4) \)**: Now we can find \( g'(-4) \): \[ g'(-4) = \frac{1}{f'(-2)} = \frac{1}{2} \] ### Final Answer: Thus, the value of \( g'(-4) \) is: \[ \boxed{\frac{1}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=x^(2)-4x-3, x gt2 and g(x) be the inverse of f(x) . Then the value fo (g') , where f(x)=2 , is (here, g' represents the first derivative of g)

If f (x) = x^(2) +x ^(4) +log x and g is the inverse of f, then g'(2) is:

If f (x) =3x ^(9) -2x ^(4) +2x ^(3)-3x ^(2) +x+ cosx +5 and g (x) =f ^(-1) (x), then the value of g'(6) equals:

Let f(x)=int_2^x (dt)/sqrt(1+t^4) and g be the inverse of f . Then, the value of g'(0) is

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

For all numbers x, let f(x) = x^(2) - 6x + 8 and g(x) = x- 2 . For how many integer values of x is g(x) ge f(x) ?

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

Let f(x)=x^(3)+x+1 and let g(x) be its inverse function then equation of the tangent to y=g(x) at x = 3 is

Given that f(x) = 4 x ^2 and g (x) =3-(x)/(2) , what is the value of f(g(4)) ?

Let f(x)=-4.sqrt(e^(1-x))+1+x+(x^(2))/(2)+(x^(3))/(3) . If g(x) is inverse of f(x) then the value of (1)/(g^(')(-(7)/(6))) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) = x^(3)+ 4x ^(2)+ 6x and g (x) be inverse then the vlaue of...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |