Home
Class 12
MATHS
If f (x) =2+ |x| -|x-1|-|x+1|, then f '(...

If `f (x) =2+ |x| -|x-1|-|x+1|,` then `f '((1)/(2)) +f' ((3)/(2))+f' ((5)/(2))` is equal to:

A

1

B

`-1`

C

2

D

`-2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( f'(\frac{1}{2}) + f'(\frac{3}{2}) + f'(\frac{5}{2}) \) for the function \( f(x) = 2 + |x| - |x-1| - |x+1| \). ### Step 1: Identify the critical points of the function The critical points for the absolute value functions are: - \( |x| \) is zero at \( x = 0 \) - \( |x-1| \) is zero at \( x = 1 \) - \( |x+1| \) is zero at \( x = -1 \) Thus, the critical points are \( -1, 0, 1 \). ### Step 2: Determine the intervals The critical points divide the real line into the following intervals: 1. \( (-\infty, -1) \) 2. \( [-1, 0) \) 3. \( [0, 1) \) 4. \( [1, \infty) \) ### Step 3: Define the function in each interval 1. **For \( x < -1 \)**: \[ f(x) = 2 + (-x) - (-(x-1)) - (-(x+1)) = 2 - x + x - 1 + x + 1 = 2 \] Thus, \( f(x) = 2 \). 2. **For \( -1 \leq x < 0 \)**: \[ f(x) = 2 + (-x) - (-(x-1)) - (x+1) = 2 - x + x - 1 - x - 1 = 0 - x = -x \] 3. **For \( 0 \leq x < 1 \)**: \[ f(x) = 2 + x - (-(x-1)) - (x+1) = 2 + x + x - 1 - x - 1 = x \] 4. **For \( x \geq 1 \)**: \[ f(x) = 2 + x - (x-1) - (x+1) = 2 + x - x + 1 - x - 1 = 2 - x \] ### Step 4: Find the derivative in each interval 1. **For \( x < -1 \)**: \[ f'(x) = 0 \] 2. **For \( -1 \leq x < 0 \)**: \[ f'(x) = -1 \] 3. **For \( 0 \leq x < 1 \)**: \[ f'(x) = 1 \] 4. **For \( x \geq 1 \)**: \[ f'(x) = -1 \] ### Step 5: Evaluate the derivatives at the specified points - \( f'(\frac{1}{2}) \) lies in the interval \( [0, 1) \), so \( f'(\frac{1}{2}) = 1 \). - \( f'(\frac{3}{2}) \) lies in the interval \( [1, \infty) \), so \( f'(\frac{3}{2}) = -1 \). - \( f'(\frac{5}{2}) \) also lies in the interval \( [1, \infty) \), so \( f'(\frac{5}{2}) = -1 \). ### Step 6: Calculate the final result Now, we can sum these derivatives: \[ f'(\frac{1}{2}) + f'(\frac{3}{2}) + f'(\frac{5}{2}) = 1 + (-1) + (-1) = 1 - 1 - 1 = -1 \] ### Final Answer Thus, the value of \( f'(\frac{1}{2}) + f'(\frac{3}{2}) + f'(\frac{5}{2}) \) is \(-1\). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = (x-1)/(x+1) , then f(2) is equal to

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=|x-1|+|x-3| ,then value of f'(2) is equal to

If f(x) = (1 + x)/(1 - x) Prove that ((f(x) f(x^(2)))/(1 + [f(x)]^(2))) = (1)/(2)

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

if f(x) = x-[x], in R, then f^(')(1/2) is equal to

If f'(x)=(1)/((1+x^(2))^(3//2)) and f(0)=0, then f(1) is equal to :

Let f(x)=(x^2-x)/(x^2+2x) then d(f^(-1)x)/(dx) is equal to

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) =2+ |x| -|x-1|-|x+1|, then f '((1)/(2)) +f' ((3)/(2))+f' ((5)...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |