Home
Class 12
MATHS
If f (x) = cos (x ^(2) -4[x]), 0 lt x lt...

If `f (x) = cos (x ^(2) -4[x]), 0 lt x lt 1,` (whre [.] denotes greatest integer function) then `f '((sqrtpi)/(2))` is equal to:

A

`-sqrt((pi)/(2))`

B

`sqrt((pi)/(2))`

C

0

D

`sqrt((pi)/(4))`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(\sqrt{\pi}/2) \) for the function \( f(x) = \cos(x^2 - 4[x]) \) where \( 0 < x < 1 \) and \([x]\) denotes the greatest integer function, we will follow these steps: ### Step 1: Understand the function The function \( f(x) = \cos(x^2 - 4[x]) \) needs to be evaluated at \( x = \sqrt{\pi}/2 \). Since \( \sqrt{\pi}/2 \approx 0.886 \), which is between 0 and 1, we have \([x] = 0\) for this range. ### Step 2: Substitute into the function Since \([x] = 0\) for \( x = \sqrt{\pi}/2 \): \[ f(x) = \cos(x^2 - 4 \cdot 0) = \cos(x^2) \] Thus, we need to compute: \[ f(\sqrt{\pi}/2) = \cos\left(\left(\frac{\sqrt{\pi}}{2}\right)^2\right) = \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} \] ### Step 3: Find the derivative We will use the limit definition of the derivative: \[ f'(\sqrt{\pi}/2) = \lim_{h \to 0} \frac{f(\sqrt{\pi}/2 + h) - f(\sqrt{\pi}/2)}{h} \] Substituting \( f(x) \): \[ f'(\sqrt{\pi}/2) = \lim_{h \to 0} \frac{\cos\left(\left(\frac{\sqrt{\pi}}{2} + h\right)^2\right) - \frac{1}{\sqrt{2}}}{h} \] ### Step 4: Expand the cosine term Using the identity \( \cos(a + b) = \cos a \cos b - \sin a \sin b \), we can expand: \[ \left(\frac{\sqrt{\pi}}{2} + h\right)^2 = \frac{\pi}{4} + \sqrt{\pi}h + h^2 \] Thus, \[ f\left(\frac{\sqrt{\pi}}{2} + h\right) = \cos\left(\frac{\pi}{4} + \sqrt{\pi}h + h^2\right) \] Using the Taylor expansion for cosine around \( \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4} + x\right) \approx \cos\left(\frac{\pi}{4}\right) - \sin\left(\frac{\pi}{4}\right)x \] where \( x = \sqrt{\pi}h + h^2 \). ### Step 5: Calculate the limit Substituting back: \[ f'(\sqrt{\pi}/2) = \lim_{h \to 0} \frac{\left(\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}}(\sqrt{\pi}h + h^2)\right) - \frac{1}{\sqrt{2}}}{h} \] This simplifies to: \[ f'(\sqrt{\pi}/2) = \lim_{h \to 0} -\frac{1}{\sqrt{2}}(\sqrt{\pi} + 0) = -\frac{\sqrt{\pi}}{\sqrt{2}} \] Thus, we have: \[ f'(\sqrt{\pi}/2) = -\sqrt{\frac{\pi}{2}} \] ### Final Answer The value of \( f'(\sqrt{\pi}/2) \) is: \[ -\sqrt{\frac{\pi}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

If f(x) =2 [x]+ cos x , then f: R ->R is: (where [ ] denotes greatest integer function)

If [.] denotes the greatest integer function, then f(x)=[x]+[x+(1)/(2)]

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=[sin^(2) x] ([.] denotes the greatest integer function), then

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

The function f(x)=1+x(sinx)[cosx], 0ltxlepi//2 , where [.] denotes greatest integer function

Let f(x) = 1 + |x|,x = -1, where [*] denotes the greatest integer function.Then f { f (- 2.3)} is equal to

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x) = cos (x ^(2) -4[x]), 0 lt x lt 1, (whre [.] denotes greatest...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |