Home
Class 12
MATHS
if f (x) = lim (x to oo) (prod(i=l)^(n )...

if `f (x) = lim _(x to oo) (prod_(i=l)^(n ) cos ((x )/(2 ^(l))))` then f '(x) is equal to:

A

`(sin x)/(x)`

B

`(x)/(sin x)`

C

`(x cos - sin x)/(x ^(2))`

D

`(sin x-x cos x)/(sin ^(2)x)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative \( f'(x) \) of the function defined as: \[ f(x) = \lim_{x \to \infty} \prod_{i=1}^{n} \cos\left(\frac{x}{2^i}\right) \] ### Step-by-Step Solution: 1. **Understanding the Product**: The function \( f(x) \) is defined as the limit of the product of cosine functions. We can rewrite it as: \[ f(x) = \lim_{x \to \infty} \left( \cos\left(\frac{x}{2}\right) \cdot \cos\left(\frac{x}{4}\right) \cdot \cos\left(\frac{x}{8}\right) \cdots \cos\left(\frac{x}{2^n}\right) \right) \] 2. **Using the Identity**: We can use the identity \( 2 \sin A \cos A = \sin(2A) \) to simplify the product. We can express the product in terms of sine: \[ f(x) = \lim_{x \to \infty} \frac{\sin\left(\frac{x}{2^{n-1}}\right)}{2^{n-1}} \cdot \frac{1}{\sin\left(\frac{x}{2^n}\right)} \] 3. **Taking the Limit**: As \( x \to \infty \), the sine function oscillates between -1 and 1. Thus, the limit of the product will depend on the behavior of the sine terms: \[ f(x) = \lim_{x \to \infty} \frac{\sin\left(\frac{x}{2^{n-1}}\right)}{2^{n-1} \sin\left(\frac{x}{2^n}\right)} \] 4. **Finding the Derivative**: To find \( f'(x) \), we will apply the product and chain rule. We can express \( f(x) \) in terms of two functions \( u(x) \) and \( v(x) \): \[ u(x) = \sin\left(\frac{x}{2^{n-1}}\right), \quad v(x) = \sin\left(\frac{x}{2^n}\right) \] Then, \[ f(x) = \frac{u(x)}{2^{n-1} v(x)} \] 5. **Applying the Quotient Rule**: The derivative \( f'(x) \) is given by: \[ f'(x) = \frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2 \cdot 2^{n-1}} \] 6. **Calculating \( u'(x) \) and \( v'(x) \)**: Using the chain rule: \[ u'(x) = \frac{1}{2^{n-1}} \cos\left(\frac{x}{2^{n-1}}\right), \quad v'(x) = \frac{1}{2^n} \cos\left(\frac{x}{2^n}\right) \] 7. **Substituting Back**: Substitute \( u'(x) \) and \( v'(x) \) back into the derivative formula: \[ f'(x) = \frac{\frac{1}{2^{n-1}} \cos\left(\frac{x}{2^{n-1}}\right) \sin\left(\frac{x}{2^n}\right) - \sin\left(\frac{x}{2^{n-1}}\right) \frac{1}{2^n} \cos\left(\frac{x}{2^n}\right)}{(\sin\left(\frac{x}{2^n}\right))^2 \cdot 2^{n-1}} \] ### Final Result: Thus, the derivative \( f'(x) \) is given by: \[ f'(x) = \frac{\frac{1}{2^{n-1}} \cos\left(\frac{x}{2^{n-1}}\right) \sin\left(\frac{x}{2^n}\right) - \sin\left(\frac{x}{2^{n-1}}\right) \frac{1}{2^n} \cos\left(\frac{x}{2^n}\right)}{(\sin\left(\frac{x}{2^n}\right))^2 \cdot 2^{n-1}} \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f (x) =lim _(nto oo) tan ^(-1) (4n ^(2) (1- cos ""(pi)/(n )))and g (x) = lim _(n to oo) (n^(2))/(2) ln cos ((2x)/(n )) then lim _(xto0) (e ^(-2g (x))-ef (x))/(x ^(6)) equals.

Let f(x)=lim_(n to oo) ((2 sin x)^(2n))/(3^(n)-(2 cos x)^(2n)), n in Z . Then

Statement.1 : The function f (x) =lim _(xtooo) (log _(e)(1+x) -x ^(2n) sin (2x))/(1+ x ^(2n)) is discontinuous at x=1 Statement.2: L.H.L. =R.H.L.ne f (1).

f (x) = lim _(x to oo) (x ^(2) + 2 (x+1)^(2n))/((x+1) ^(2n+1) + x^(2) +1),n in N and g (x) =tan ((1)/(2)sin ^(-1)((2f (x))/(1+f ^(2) (x)))), then lim_(x to -3) ((x ^(2) +4x +3))/(sin (x+3) g (x)) is equal to:

We have f (x) lim_(n to oo) cos (x)/(2) cos (x)/(2^(2)) cos (x)/(2^(3)) cos (x)/(2^(4)) …… …. cos (x)/(2^(n)) = ("sin" x)/(2^(n) "sin" (x)/(2^(n))) using the identity lim_(n to oo) lim_(x to 0) f(x) equals

Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim_( n to oo) (f(x)+x^(2n)g(x))/(1+x^(2n)) If F(x) is continuous at x=-1, then

If f(x)=lim_(n->oo)[2x+4x^3+6x^5++2n x^(2n-1)] (0ltxlt1) then int f(x)dx is equal to:

Let f(x) and g(x) be two continuous function and h(x)= lim_(n to oo) (x^(2n).f(x)+x^(2m).g(x))/((x^(2n)+1)). if the limit of h(x) exists at x=1, then one root of f(x)-g(x) =0 is _____.

Let f(x)=In [cos|x|+(1)/(2)] where [.] denotes the greatest integer function, then int_(x_(1))^(x_(2)) lim_(nto oo)(({f(x)}^(n))/(x^(2)+tan^(2)x))dx is equal to, where x_(1),x_(2) in [(-pi)/(6),(pi)/(6)]

If f (x) = lim _( n to oo) (n (x ^(1//n)-1)) for x gt 0, then which of the following is/are true?

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. if f (x) = lim (x to oo) (prod(i=l)^(n ) cos ((x )/(2 ^(l)))) then f '...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |