Home
Class 12
MATHS
Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(...

Let `f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):}, then f '(0)`

A

1

B

`-1`

C

0

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(0) \) for the given function \[ f(x) = \begin{cases} e^{-\frac{1}{x^2}} \sin\left(\frac{1}{x}\right) & \text{if } x \neq 0 \\ \lambda & \text{if } x = 0 \end{cases} \] we will use the definition of the derivative: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \] ### Step 1: Evaluate \( f(0) \) From the definition of \( f(x) \), we know: \[ f(0) = \lambda \] ### Step 2: Substitute \( f(h) \) for \( h \neq 0 \) For \( h \neq 0 \): \[ f(h) = e^{-\frac{1}{h^2}} \sin\left(\frac{1}{h}\right) \] ### Step 3: Set up the limit Now, substituting into the limit: \[ f'(0) = \lim_{h \to 0} \frac{e^{-\frac{1}{h^2}} \sin\left(\frac{1}{h}\right) - \lambda}{h} \] ### Step 4: Analyze the behavior of \( e^{-\frac{1}{h^2}} \) As \( h \to 0 \), \( e^{-\frac{1}{h^2}} \to 0 \) because the exponent \( -\frac{1}{h^2} \) approaches negative infinity. ### Step 5: Analyze \( \sin\left(\frac{1}{h}\right) \) The term \( \sin\left(\frac{1}{h}\right) \) oscillates between -1 and 1 as \( h \to 0 \). Therefore, we can bound it: \[ -e^{-\frac{1}{h^2}} \leq e^{-\frac{1}{h^2}} \sin\left(\frac{1}{h}\right) \leq e^{-\frac{1}{h^2}} \] ### Step 6: Substitute into the limit Now, we can rewrite the limit: \[ f'(0) = \lim_{h \to 0} \frac{e^{-\frac{1}{h^2}} \sin\left(\frac{1}{h}\right) - \lambda}{h} \] ### Step 7: Evaluate the limit Since \( e^{-\frac{1}{h^2}} \to 0 \): \[ \lim_{h \to 0} \frac{e^{-\frac{1}{h^2}} \sin\left(\frac{1}{h}\right)}{h} = 0 \] Thus, we have: \[ f'(0) = \lim_{h \to 0} \frac{0 - \lambda}{h} \] This limit will approach \( -\infty \) or \( +\infty \) depending on the value of \( \lambda \). For \( f'(0) \) to exist and be finite, we require \( \lambda = 0 \). ### Conclusion Thus, if \( \lambda = 0 \): \[ f'(0) = 0 \] If \( \lambda \neq 0 \), \( f'(0) \) does not exist. ### Final Answer \[ f'(0) = 0 \quad \text{if } \lambda = 0 \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

A function f :R to R is given by f (x) = {{:(x ^(4) (2+ sin ""(1)/(x)), x ne0),(0, x=0):}, then

If f(x)={{:(,x^(2)sin((1)/(x)),x ne 0),(,0, x=0):} , then

Let f (x)= {{:(x ^(n) (sin ""(1)/(x )",") , x ne 0),( 0"," , x =0):} Such that f (x) is continuous at x =0, f '(0) is real and finite, and lim _(x to 0^(+)) f'(x) does not exist. The holds true for which of the following values of n ?

If f(x)={{:(x^(2)"sin"(1)/(x)",",x ne0),(k",",x=0):}

Let f(x)={{:((2^((1)/(x))-1)/(2^((1)/(x))+1),":",xne0),(0,":,x=0):} , then f(x) is

If f(x)={{:((e^((2)/(x))-1)/(e^((2)/(x))+1),:,x ne 0),(0,:,x=0):} , then f(x) is

If f(x)={:{(xe^(-(1/(|x|) + 1/x)), x ne 0),(0 , x =0 ):} then f(x) is

f(x)={{:(e^(1//x)/(1+e^(1//x)),if x ne 0),(0,if x = 0):} at x = 0

f(x) = {{:(|x|sin\ (1)/(x-a),if x ne 0),(0, if x =a):} at x = a

f(x) = {{:((1-coskx)/(x sinx), if x ne 0),(1/2, if x = 0):} at x = 0

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f (x) = {{:(e ^((1)/(x ^(2)))sin ""(1)/(x), x ne0),(lamda, x =(0):...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |