Home
Class 12
MATHS
If f (x)= {{:((sin {cos x})/(x- (pi)/(2)...

If `f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)/(2)):},` where {k} represents the fractional park of k, then:

A

f (x) is continous at `x = (pi)/(2)`

B

`lim _(x to (pi)/2)` f (x) does not exist

C

`lim _(x to (pi)/(2))f (x)` exists, but f is not continuous at `x = (pi)/(2)`

D

`lim _(x to (pi)/(2))f (x)=1`

Text Solution

AI Generated Solution

The correct Answer is:
To determine the continuity of the function \( f(x) \) at \( x = \frac{\pi}{2} \), we need to check the left-hand limit (LHL) and the right-hand limit (RHL) at that point, and see if they equal \( f\left(\frac{\pi}{2}\right) \). Given: \[ f(x) = \begin{cases} \frac{\sin(\text{cos } x)}{x - \frac{\pi}{2}}, & x \neq \frac{\pi}{2} \\ 1, & x = \frac{\pi}{2} \end{cases} \] ### Step 1: Calculate the Left-Hand Limit (LHL) We calculate the left-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the left: \[ \text{LHL} = \lim_{x \to \frac{\pi}{2}^-} f(x) = \lim_{x \to \frac{\pi}{2}^-} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} \] ### Step 2: Substitute \( x = \frac{\pi}{2} - h \) Let \( h \) be a small positive number, then as \( x \to \frac{\pi}{2}^- \), \( h \to 0^+ \): \[ \text{LHL} = \lim_{h \to 0^+} \frac{\sin(\cos(\frac{\pi}{2} - h))}{\frac{\pi}{2} - h - \frac{\pi}{2}} = \lim_{h \to 0^+} \frac{\sin(\sin h)}{-h} \] ### Step 3: Simplify the Limit As \( h \to 0 \), \( \sin h \to h \): \[ \text{LHL} = \lim_{h \to 0^+} \frac{\sin(\sin h)}{-h} \] Using the small angle approximation \( \sin x \approx x \): \[ \text{LHL} = \lim_{h \to 0^+} \frac{\sin(h)}{-h} \] ### Step 4: Apply L'Hôpital's Rule Since this is an indeterminate form \( \frac{0}{0} \), we can apply L'Hôpital's Rule: \[ \text{LHL} = \lim_{h \to 0^+} \frac{\cos(h)}{-1} = -\cos(0) = -1 \] ### Step 5: Calculate the Right-Hand Limit (RHL) Now we calculate the right-hand limit as \( x \) approaches \( \frac{\pi}{2} \) from the right: \[ \text{RHL} = \lim_{x \to \frac{\pi}{2}^+} f(x) = \lim_{x \to \frac{\pi}{2}^+} \frac{\sin(\cos x)}{x - \frac{\pi}{2}} \] ### Step 6: Substitute \( x = \frac{\pi}{2} + h \) Let \( h \) be a small positive number, then as \( x \to \frac{\pi}{2}^+ \), \( h \to 0^+ \): \[ \text{RHL} = \lim_{h \to 0^+} \frac{\sin(\cos(\frac{\pi}{2} + h))}{\frac{\pi}{2} + h - \frac{\pi}{2}} = \lim_{h \to 0^+} \frac{\sin(-\sin h)}{h} \] ### Step 7: Simplify the Limit Using the property \( \sin(-x) = -\sin(x) \): \[ \text{RHL} = \lim_{h \to 0^+} \frac{-\sin(\sin h)}{h} \] ### Step 8: Apply L'Hôpital's Rule Again This is again an indeterminate form \( \frac{0}{0} \): \[ \text{RHL} = \lim_{h \to 0^+} \frac{-\cos(\sin h) \cos h}{1} = -\cos(0) = -1 \] ### Step 9: Compare Limits and Function Value We have: - \( \text{LHL} = -1 \) - \( \text{RHL} = -1 \) - \( f\left(\frac{\pi}{2}\right) = 1 \) Since \( \text{LHL} \neq f\left(\frac{\pi}{2}\right) \) and \( \text{RHL} \neq f\left(\frac{\pi}{2}\right) \), the function is not continuous at \( x = \frac{\pi}{2} \). ### Conclusion The function \( f(x) \) is not continuous at \( x = \frac{\pi}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} represents the fractional part function, then lim_(xto pi//2)f(x) is

if f(x) ={{:(cos^-1 {cos x},xlt(pi)/(2)),( pi[x]-1,x ge (pi)/(2) ):}. where [.] repesents greatest funcrtion and {.} represents fractional part function , then discuss the continuity of f(x) at x=(pi)/(2).

If f:R->R and f(x)=sin(pi{x})/(x^4+3x^2+7) , where {} is a fractional part of x , then

If f(x)={{:((1-tanx)/(4x-pi)",",x ne(pi)/(4)),(k ",",x=(pi)/(4)):} is continuous at x=(pi)/(4) then the value of k is

If 2sin^(-1)x+{cos^(-1)x} gt (pi)/(2)+{sin^(-1)x} , then x in : (where {*} denotes fractional part function)

If f(x)={((sin(cosx)-cosx)/((pi-2x)^2) ,, x!=pi/2),(k ,, x=pi/2):} is continuous at x=pi/2, then k is equal to

Let f(0,pi) to R be defined as f(x)={{:(,(1-sinx)/((pi-2x)^(2)).(In sin x)/((In(1+pi^(2)-4pix+4x^(2)))),x ne (pi)/(2)),(,k,x=(pi)/(2)):} If a continuous at x=(pi)/(2) , then the value of 8sqrt|k|,is

If f(x)={{:(tan((pi)/(4)-x)/(cot2x)",",x ne(pi)/(4)),(k",",x=(pi)/(4)):} is continuous at x=(pi)/(4) , then the value of k is

Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

The period of function 2^({x}) +sin pi x+3^({x//2})+cos pi x (where {x} denotes the fractional part of x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If f (x)= {{:((sin {cos x})/(x- (pi)/(2)) , x ne (pi)/(2)),(1, x= (pi)...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |