Home
Class 12
MATHS
Let f(x) be a polynomial in x . Then the...

Let `f(x)` be a polynomial in `x` . Then the second derivative of `f(e^x)wdotrdottdotxi s` `f^(e^x)dote^x+f^(prime)(e^x)` `f^(e^x)dote^(2x)+f^(prime)(e^x)dote^(2x)` `f^(e^x)e^(2x)` (d) `f^(e^x)dote^(2x)+f^(prime)(e^x)dote^x`

A

`f ''(e^(x))e ^(x)+f (e ^(x))`

B

`f ''(e^(x))e ^(2x)+f '(e ^(x))e ^(2n)`

C

`f '' (e ^(x)) e ^(x)+ f'(e^(x)) e ^(2x)`

D

`f ''(e^(x))e ^(2x) +e ^(x) f'(e^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the second derivative of the function \( f(e^x) \) with respect to \( x \). Let's go through the steps systematically. ### Step 1: Define the function Let \( y = f(e^x) \). ### Step 2: First derivative To find the first derivative \( \frac{dy}{dx} \), we use the chain rule. The chain rule states that if you have a composite function, the derivative is the derivative of the outer function evaluated at the inner function multiplied by the derivative of the inner function. 1. Differentiate \( f(e^x) \): \[ \frac{dy}{dx} = f'(e^x) \cdot \frac{d}{dx}(e^x) \] 2. The derivative of \( e^x \) is \( e^x \): \[ \frac{dy}{dx} = f'(e^x) \cdot e^x \] ### Step 3: Second derivative Now, we need to differentiate \( \frac{dy}{dx} \) to find the second derivative \( \frac{d^2y}{dx^2} \). 1. Differentiate \( \frac{dy}{dx} = f'(e^x) \cdot e^x \): Using the product rule, which states that \( (uv)' = u'v + uv' \): \[ \frac{d^2y}{dx^2} = \frac{d}{dx}(f'(e^x)) \cdot e^x + f'(e^x) \cdot \frac{d}{dx}(e^x) \] 2. Now, we need to differentiate \( f'(e^x) \) using the chain rule again: \[ \frac{d}{dx}(f'(e^x)) = f''(e^x) \cdot \frac{d}{dx}(e^x) = f''(e^x) \cdot e^x \] 3. Substitute back into the second derivative: \[ \frac{d^2y}{dx^2} = f''(e^x) \cdot e^x \cdot e^x + f'(e^x) \cdot e^x \] \[ = e^{2x} f''(e^x) + e^x f'(e^x) \] ### Final Result Thus, the second derivative of \( f(e^x) \) with respect to \( x \) is: \[ \frac{d^2y}{dx^2} = e^{2x} f''(e^x) + e^x f'(e^x) \] ### Conclusion The correct answer corresponds to option (d): \[ f''(e^x) \cdot e^{2x} + f'(e^x) \cdot e^x \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) be a polynomial.Then, the second order derivative of f(e^x) is

Let f(x) be a polynomial. Then, the second order derivative of f(e^x) is f"(e^x)e^(2x)+f'(e^x)e^x (b) f"(e^x)e^x+f'(e^x) (c) f"(e^x)e^(2x)+f"(e^x)e^x (d) f"(e^x)

The derivative of f(x) = e^(2x) is

The derivative of f(x) = x^(4) e^(x) is

Derivative of f(x) = x + e^(x) is

The derivative of f(x) = (x^(4))/(e^(x)) is

f(x)=e^x-e^(-x) then find f'(x)

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

If f(x)=e^(1-x) then f(x) is

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. Let f(x) be a polynomial in x . Then the second derivative of f(e^x)wd...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |