Home
Class 12
MATHS
If e^f(x)= log x and g(x) is the invers...

If `e^f(x)= log x` and g(x) is the inverse function of f(x), then `g'(x)` is

A

`e ^(x) +x`

B

`e ^(e ^(e ^(x)))e ^(e ^(x))`

C

`e ^(e ^(x)+z)`

D

`e ^(e ^(x))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find \( g'(x) \) where \( g(x) \) is the inverse function of \( f(x) \) given that \( e^{f(x)} = \log x \). ### Step-by-Step Solution: 1. **Start with the given equation:** \[ e^{f(x)} = \log x \] 2. **Take the natural logarithm of both sides:** \[ \log(e^{f(x)}) = \log(\log x) \] Using the property of logarithms, \( \log(e^y) = y \), we simplify: \[ f(x) = \log(\log x) \] 3. **Since \( g(x) \) is the inverse function of \( f(x) \), we have:** \[ f(g(x)) = x \] This means: \[ \log(\log(g(x))) = x \] 4. **Exponentiate both sides to eliminate the logarithm:** \[ \log(g(x)) = e^x \] 5. **Exponentiate again to solve for \( g(x) \):** \[ g(x) = e^{e^x} \] 6. **Now, differentiate \( g(x) \) to find \( g'(x) \):** \[ g'(x) = \frac{d}{dx}(e^{e^x}) \] Using the chain rule: \[ g'(x) = e^{e^x} \cdot \frac{d}{dx}(e^x) \] The derivative of \( e^x \) is \( e^x \), so: \[ g'(x) = e^{e^x} \cdot e^x \] 7. **Final result:** \[ g'(x) = e^{e^x} \cdot e^x \] ### Conclusion: Thus, the derivative \( g'(x) \) is: \[ g'(x) = e^{e^x} \cdot e^x \]
Promotional Banner

Topper's Solved these Questions

  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (ONE OR MORE THAN ONE ANSWER IS/ARE CORRECT)|36 Videos
  • CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE (COMPREHENSION TYPE PROBLEMS)|30 Videos
  • COMPOUND ANGLES

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise Exercise-5 : Subjective Type Problems|31 Videos
  • DETERMINANTS

    VIKAS GUPTA (BLACK BOOK) ENGLISH|Exercise EXERCISE-4 : SUBJECTIVE TYPE PROBLEMS|12 Videos

Similar Questions

Explore conceptually related problems

Let f(x) = x + cos x + 2 and g(x) be the inverse function of f(x), then g'(3) equals to ........ .

Let e^(f(x))=lnxdot If g(x) is the inverse function of f(x), then g^(prime)(x) equal to: (a) e^x (b) e^x+x . (c) e^x+e^x (d) e^(e^x+x)

If f(x)=x^(3)+3x+1 and g(x) is the inverse function of f(x), then the value of g'(5) is equal to

if f(x)=x^x,x in (1,infty) and g(x) be inverse function of f(x) then g^(')(x) must be equal to

If f(x)=x^(3)+3x+4 and g is the inverse function of f(x), then the value of (d)/(dx)((g(x))/(g(g(x)))) at x = 4 equals

Consider a function f(x)=x^(x), AA x in [1, oo) . If g(x) is the inverse function of f(x) , then the value of g'(4) is equal to

If f (x) = x^(2) +x ^(4) +log x and g is the inverse of f, then g'(2) is:

Let f(x) = exp(x^3 +x^2+x) for any real number and let g(x) be the inverse function of f(x) then g'(e^3)

Consider the function f(x)=tan^(-1){(3x-2)/(3+2x)}, AA x ge 0. If g(x) is the inverse function of f(x) , then the value of g'((pi)/(4)) is equal to

f(x)=x^x , x in (0,oo) and let g(x) be inverse of f(x) , then g(x)' must be

VIKAS GUPTA (BLACK BOOK) ENGLISH-CONTINUITY, DIFFERENTIABILITY AND DIFFERENTIATION-EXERCISE (SUBJECTIVE TYPE PROBLEMS)
  1. If e^f(x)= log x and g(x) is the inverse function of f(x), then g'(x)...

    Text Solution

    |

  2. Let f (x)= {{:(ax (x-1)+b,,, x lt 1),( x+2,,, 1 le x le 3),(px ^(2) +q...

    Text Solution

    |

  3. If y= sin (8 sin ^(-1) x ) then (1-x ^(2)) (d^(2)y)/(dx ^(2))-x (dy)/...

    Text Solution

    |

  4. If y ^(2) =4ax, then (d^(2) y)/(dx ^(2))=(ka ^(2))/( y ^(3)), where k ...

    Text Solution

    |

  5. The number of values of x , x ∈ [-2,3] where f (x) =[x ^(2)] sin (pix)...

    Text Solution

    |

  6. If f (x) is continous and differentiable in [-3,9] and f'(x) in [-2,8]...

    Text Solution

    |

  7. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  8. Consider f(x) =x^(2)+ax+3 and g(x) =x+band F(x) = lim( n to oo) (f...

    Text Solution

    |

  9. Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f...

    Text Solution

    |

  10. If f (x) +2 f (1-x) =x ^(2) +2 AA x in R and f (x) is a differentiable...

    Text Solution

    |

  11. Let f (x)= signum (x) and g (x) =x (x ^(2) -10x+21), then the number o...

    Text Solution

    |

  12. If (d^(2))/(d x ^(2))((sin ^(4)x+ sin ^(2)x+1)/(sin ^(2)x + si n x+1))...

    Text Solution

    |

  13. f (x) =a cos (pix)+b, f'((1)/(2))=pi and int (1//2)^(3//2) f (x) dx =2...

    Text Solution

    |

  14. Let alpha (x) = f(x) -f (2x) and beta (x) =f (x) -f (4x) and alpha '(1...

    Text Solution

    |

  15. Let f (x) =-4.e ^((1-x)/(2))+ (x ^(3))/(3 ) + (x ^(2))/(2)+ x+1 and g ...

    Text Solution

    |

  16. If y=e^(2 sin ^(-1)x) then |((x ^(2) -1) y ^('') +xy')/(y)| is equal t...

    Text Solution

    |

  17. Let f be continuous function on [0,oo) such that lim (x to oo) (f(x)+ ...

    Text Solution

    |

  18. Let f (x)=x+ (x ^(2))/(2 )+ (x ^(3))/(3 )+ (x ^(4))/(4 ) +(x ^(5))/(5)...

    Text Solution

    |

  19. In f (x)= [{:(cos x ^(2),, x lt 0), ( sin x ^(3) -|x ^(3)-1|,, x ge 0)...

    Text Solution

    |

  20. Let f :R to R be a differentiable function satisfying: f (xy) =(f(x)...

    Text Solution

    |

  21. For the curve sinx+siny=1 lying in first quadrant. If underset(xrarr0...

    Text Solution

    |